990 resultados para Categories (Matemàtica)
Resumo:
We study homotopy limits for 2-categories using the theory of Quillen model categories. In order to do so, we establish the existence of projective and injective model structures on diagram 2-categories. Using these results, we describe the homotopical behaviour not only of conical limits but also of weighted limits. Finally, pseudo-limits are related to homotopy limits.
Resumo:
In this paper we obtain several model structures on DblCat, the category of small double categories. Our model structures have three sources. We first transfer across a categorification-nerve adjunction. Secondly, we view double categories as internal categories in Cat and take as our weak equivalences various internal equivalences defined via Grothendieck topologies. Thirdly, DblCat inherits a model structure as a category of algebras over a 2-monad. Some of these model structures coincide and the different points of view give us further results about cofibrant replacements and cofi brant objects. As part of this program we give explicit descriptions and discuss properties of free double categories, quotient double categories, colimits of double categories, and several nerves and categorifications.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
This is an introduction to some aspects of Fomin-Zelevinsky’s cluster algebras and their links with the representation theory of quivers and with Calabi-Yau triangulated categories. It is based on lectures given by the author at summer schools held in 2006 (Bavaria)and 2008 (Jerusalem). In addition to by now classical material, we present the outline of a proof of the periodicity conjecture for pairs of Dynkin diagrams (details will appear elsewhere) and recent results on the interpretation of mutations as derived equivalences.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We construct a cofibrantly generated Thomason model structure on the category of small n-fold categories and prove that it is Quillen equivalent to the standard model structure on the category of simplicial sets. An n-fold functor is a weak equivalence if and only if the diagonal of its n-fold nerve is a weak equivalence of simplicial sets. We introduce an n-fold Grothendieck construction for multisimplicial sets, and prove that it is a homotopy inverse to the n-fold nerve. As a consequence, the unit and counit of the adjunction between simplicial sets and n-fold categories are natural weak equivalences.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We extend the basic concepts of Street's formal theory of monads from the setting of 2-categories to that of double categories. In particular, we introduce the double category Mnd(C) of monads in a double category C and dene what it means for a double category to admit the construction of free monads. Our main theorem shows that, under some mild conditions, a double category that is a framed bicategory admits the construction of free monads if its horizontal 2-category does. We apply this result to obtain double adjunctions which extend the adjunction between graphs and categories and the adjunction between polynomial endofunctors and polynomial monads.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
In this paper, we compute the triangular spectrum (as de fined by P. Balmer) of two classes of tensor triangulated categories which are quite common in algebraic geometry. One of them is the derived category of G-equivariant sheaves on a smooth scheme X, for a fi nite group G. The other class is the derived category of split superschemes.
Resumo:
It is known that, in a locally presentable category, localization exists with respect to every set of morphisms, while the statement that localization with respect to every (possibly proper) class of morphisms exists in locally presentable categories is equivalent to a large-cardinal axiom from set theory. One proves similarly, on one hand, that homotopy localization exists with respect to sets of maps in every cofibrantly generated, left proper, simplicial model category M whose underlying category is locally presentable. On the other hand, as we show in this article, the existence of localization with respect to possibly proper classes of maps in a model category M satisfying the above assumptions is implied by a large-cardinal axiom called Vopënka's principle, although we do not know if the reverse implication holds. We also show that, under the same assumptions on M, every endofunctor of M that is idempotent up to homotopy is equivalent to localization with respect to some class S of maps, and if Vopënka's principle holds then S can be chosen to be a set. There are examples showing that the latter need not be true if M is not cofibrantly generated. The above assumptions on M are satisfied by simplicial sets and symmetric spectra over simplicial sets, among many other model categories.
Resumo:
We prove that, under suitable assumptions on a category C, the existence of supercompact cardinals implies that every absolute epireflective class of objects of C is a small-orthogonality class. More precisely, if L is a localization functor on an accessible category C such that the unit morphism X→LX is an extremal epimorphism for all X, and the class of L-local objects is defined by an absolute formula with parameters, then the existence of a supercompact cardinal above the cardinalities of the parameters implies that L is a localization with respect to some set of morphisms.
Resumo:
We present a solution to the problem of defining a counterpart in Algebraic Set Theory of the construction of internal sheaves in Topos Theory. Our approach is general in that we consider sheaves as determined by Lawvere-Tierney coverages, rather than by Grothen-dieck coverages, and assume only a weakening of the axioms for small maps originally introduced by Joyal and Moerdijk, thus subsuming the existing topos-theoretic results.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."