979 resultados para Catalyzed Coupling Reactions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The regioselective formation of highly branched dienes is a challenging task. Design and exploration of alternative working models to achieve such a regioselectivity to accomplish highly branched dienes is considered to be a historical advancement of Heck reaction to construct branched dienes. On the basis of the utility of carbene transfer reactions, in the reaction of hydrazones with Pd(II) under oxidative conditions, we envisioned obtaining a Pd-bis-carbene complex with alpha-hydrogens, which can lead to branched dienes. Herein, we report a novel Pd-catalyzed selective coupling reaction of hydrazones in the presence of t-BuOLi and benzoquinone to form the corresponding branched dienes. The utility of the Pd catalyst for the cross-coupling reactions for synthesizing branched conjugated dienes is rare. The reaction is very versatile and compatible with a variety of functional groups and is useful in synthesizing heterocyclic molecules. We anticipate that this Pd-catalyzed cross-coupling reaction will open new avenues for synthesizing useful compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New and robust methodologies have been designed for palladium-catalyzed crosscoupling reactions involving·a novel·class oftertiary phosphine ligand incorporating a phospha-adamantane framework. It has been realized that bulky, electron-rich phosphines, when used as ligands for palladium, allow for cross-coupling reactions involving even the less reactive aryl halide substrates with a variety of coupling partners. In an effort to design new ligands suitable for carrying out cross-coupling transformations, the secondary phosphine, 1,3,5,7-tetramethyl-2,4,8-trioxa-6phosphaadamantane was converted into a number of tertiary phosphine derivatives. The ability of these tertiary phosphaadamantanes to act as effective ligands in the palladiumcatalyzed Suzuki cross-coupling was examined. 1,3,5,7-Tetramethyl-6-phenyl-2,4,8trioxa- 6-phosphaadamantane (PA-Ph) used in combination with Pdz(dba)3permitted the reaction of an array of aryl iodides, bromides and chlorides with a variety arylboronic acids to give biaryls in good to excellent yields. Subsequently, palladium complexes of PA-Ph were prepared and isolated in high yields as air stable palladium bisphosphine complexes. Two different kinds of crystals were isolated and upon characterization revealed two complexes, Pd(PA-Ph)z.dba and Pd(PA-Ph)zOz. Preliminary screening for their catalytic activity indicated that the former is more reactive than the latter. Pd(PAPh) z.dba was applied as the catalyst for Sonogashira cross-coupling reactions of aryl iodides and bromides and in the reactions of aryl bromides and chlorides with ketones to give a-arylated ketones at mild temperatures in high yields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New and robust methodologies have been designed for palladiumcatalyzed cross-coupling reactions involving a library of novel tertiary phosphine ligands incorporating a phospha-adamantane framework. The secondary phosphine, l,3,5,7-tetramethyl-2,4,8-trioxa-6-phospha-adamantane was converted into a small library of tertiary phosphine derivatives and the ability of these tertiary phosphaadamantanes to act as effective ligands in the palladium-catalyzed amination reaction and p-alkyl-Suzuki cross-coupling was examined. l,3,5,7-Tetramethyl-6- phenyl-2,4,8-trioxa-6-phosphaadamantane (PA-Ph) used in combination with Pd2(dba)3 CHCI3 facilitated the reaction of an array of aryl iodides, bromides and chlorides with a variety secondary and primary amines to give tertiary and secondary amines respectively in good to excellent yields. 8-(2,4-Dimethoxyphenyl)- l,3,5,7-tetramethyl-2,4,6-trioxa-8-phospha-tricyclo[3.3.1.1*3,7*]decane used in combination with Pd(0Ac)2 permitted the reaction of an array of alkyl iodides, and bromides with a variety aryl boronic acids and alkyl 9-BBN compounds in good to excellent yields. Subsequent to this work, the use of phosphorous based ionic liquids, specifically tetradecyltrihexylphosphonium chloride (THPC), in the Heck reaction provided good to excellent yields in the coupling of aryl iodides and bromides with a variety of olefins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diverse biological properties exhibited by uridine analogues modified at carbon-5 of the uracil base have attracted special interest to the development of efficient methodologies for their synthesis. This study aimed to evaluate the possible application of vinyl tris(trimethylsilyl)germanes in the synthesis of conjugated 5-modified uridine analogues via Pd-catalyzed cross-coupling reactions. The stereoselective synthesis of 5-[(2-tris(trimethylsilyl)germyl)ethenyl]uridine derivatives was achieved by the radical-mediated hydrogermylation of the protected 5-alkynyluridine precursors with tris(trimethylsilyl)germane [(TMS)3GeH]. The hydrogermylation with Ph3GeH afforded in addition to the expected 5-vinylgermane, novel 5-(2-triphenylgermyl)acetyl derivatives. Also, the treatment with Me3GeH provided access to 5-vinylgermane uridine analogues with potential biological applications. Since the Pd-catalyzed cross-coupling of organogermanes has received much less attention than the couplings involving organostannanes and organosilanes, we were prompted to develop novel organogermane precursors suitable for transfer of aryl and/or alkenyl groups. The allyl(phenyl)germanes were found to transfer allyl groups to aryl iodides in the presence of sodium hydroxide or tetrabutylammonium fluoride (TBAF) via a Heck arylation mechanism. On the other hand, the treatment of allyl(phenyl)germanes with tetracyanoethylene (TCNE) effectively cleaved the Ge-C(allyl) bonds and promoted the transfer of the phenyl groups upon fluoride activation in toluene. It was discovered that the trichlorophenyl,- dichlorodiphenyl,- and chlorotriphenylgermanes undergo Pd-catalyzed cross-couplings with aryl bromides and iodides in the presence of TBAF in toluene with addition of the measured amount of water. One chloride ligand on the Ge center allows efficient activation by fluoride to promote transfer of one, two or three phenyl groups from the organogermane precursors. The methodology shows that organogermanes can render a coupling efficiency comparable to the more established stannane and silane counterparts. Our coupling methodology (TBAF/moist toluene) was also found to promote the transfer of multiple phenyl groups from analogous chloro(phenyl)silanes and stannanes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although group 14 organometallic compounds (Si, Sn) have been well developed as transmetallation reagents in cross-coupling reactions, the application of organogermanium compounds as cross-coupling reagents is still a relatively new area with few papers published. This study aimed to develop methods for the synthesis of new classes of vinyl germane and vinyl silane compounds, mainly Z and E tris(trimethylsilyl)germanes and silanes, which were then applied to Pd-catalyzed cross-couplings with aryl and alkenyl halides. The stereoselective radical-mediated desulfonylation of vinyl sulfones with tris(trimethyl)germanium or silane hydrides provided access to the synthesis of trans vinyl germanes or silanes. Alternatively hydrogermylation or hydrosilylation of terminal alkynes gave cis vinyl germanes or silanes. The application of these new classes of organometallic compounds in cross-coupling reactions with various aryl and alkenyl halides under aqueous [NaOH/H2O2/Pd(PPh 3)4] and anhydrous [KH/t-BuOOH/Pd(PPh 3)4] oxidative conditions were investigated. ^ It was found that the vinyl tris(trimethylsilyl)germanes successfully underwent Pd-catalyzed cross-couplings with aryl and alkenyl halides and aryl triflates under aqueous and anhydrous oxidative conditions. These procedures provided examples of "ligand-free" Pd-catalyzed coupling of organogermanes with aryl and alkenyl halides. Interestingly, couplings with fluorinated vinyl germanes appeared to occur more easily than with the corresponding (α-fluoro)vinyl stannanes and silanes since neither addition of an extra ligand nor activation with fluoride was necessary. The vinyl tris(trimethyl)silanes were found to be alternative substrates for the Hiyama reaction. The coupling of TTMS-silanes with various aryl, heteroaryl as well as alkenyl halides proceeded smoothly upon treatment with hydrogen peroxide in the presence of sodium hydroxide and fluoride ion. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The enzyme S-adenosyl-L-homocysteine (AdoHcy) hydrolase effects hydrolytic cleavage of AdoHcy to adenosine (Ado) and L-homocysteine (Hcy). The cellular levels of AdoHcy and Hcy are critical because AdoHcy is a potent feedback inhibitor of crucial transmethylation enzymes. Also, elevated plasma levels of Hcy in humans have been shown to be a risk factor in coronary artery disease. ^ On the basis of the previous finding that AdoHcy hydrolase is able to add the enzyme-sequestered water molecule across the 5',6'-double bond of (halo or dihalohomovinyl)-adenosines causing covalent binding inhibition, we designed and synthesized AdoHcy analogues with the 5',6'-olefin motif incorporated in place of the carbon-5' and sulfur atoms. From the available synthetic methods we chose two independent approaches: the first approach was based on the construction of a new C5'-C6' double bond via metathesis reactions, and the second approach was based on the formation of a new C6'-C7' single bond via Pd-catalyzed cross-couplings. Cross-metathesis of the suitably protected 5'-deoxy-5'-methyleneadenosine with racemic 2-amino-5-hexenoate in the presence of Hoveyda-Grubb's catalyst followed by standard deprotection afforded the desired analogue as 5' E isomer of the inseparable mixture of 9'R/S diastereomers. Metathesis of chiral homoallylglycine [(2S)-amino-5-hexenoate] produced AdoHcy analogue with established stereochemistry E at C5'atom and S at C9' atom. The 5'-bromovinyl analogue was synthesized using the bromination-dehydrobromination strategy with pyridinium tribromide and DBU. ^ Since literature reports on the Pd-catalyzed monoalkylation of dihaloalkenes (Csp2-Csp3 coupling) were scarce, we were prompted to undertake model studies on Pd-catalyzed coupling between vinyl dihalides and alkyl organometallics. The 1-fluoro-1-haloalkenes were found to undergo Negishi couplings with alkylzinc bromides to give multisubstituted fluoroalkenes. The alkylation was trans-selective affording pure Z-fluoroalkenes. The highest yields were obtained with PdCl 2(dppb) catalyst, but the best stereochemical outcome was obtained with less reactive Pd(PPh3)4. Couplings of 1,1-dichloro-and 1,1-dibromoalkenes with organozinc reagents resulted in the formation of monocoupled 1-halovinyl product. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diverse biological properties exhibited by uridine analogues modified at carbon-5 of the uracil base have attracted special interest to the development of efficient methodologies for their synthesis. This study aimed to evaluate the possible application of vinyl tris(trimethylsilyl)germanes in the synthesis of conjugated 5-modified uridine analogues via Pd-catalyzed cross-coupling reactions. The stereoselective synthesis of 5-[(2-tris(trimethylsilyl)germyl)ethenyl]uridine derivatives was achieved by the radical-mediated hydrogermylation of the protected 5-alkynyluridine precursors with tris(trimethylsilyl)germane [(TMS)3GeH]. The hydrogermylation with Ph3GeH afforded in addition to the expected 5-vinylgermane, novel 5-(2-triphenylgermyl)acetyl derivatives. Also, the treatment with Me3GeH provided access to 5-vinylgermane uridine analogues with potential biological applications. Since the Pd-catalyzed cross-coupling of organogermanes has received much less attention than the couplings involving organostannanes and organosilanes, we were prompted to develop novel organogermane precursors suitable for transfer of aryl and/or alkenyl groups. The allyl(phenyl)germanes were found to transfer allyl groups to aryl iodides in the presence of sodium hydroxide or tetrabutylammonium fluoride (TBAF) via a Heck arylation mechanism. On the other hand, the treatment of allyl(phenyl)germanes with tetracyanoethylene (TCNE) effectively cleaved the Ge-C(allyl) bonds and promoted the transfer of the phenyl groups upon fluoride activation in toluene. It was discovered that the trichlorophenyl,- dichlorodiphenyl,- and chlorotriphenylgermanes undergo Pd-catalyzed cross-couplings with aryl bromides and iodides in the presence of TBAF in toluene with addition of the measured amount of water. One chloride ligand on the Ge center allows efficient activation by fluoride to promote transfer of one, two or three phenyl groups from the organogermane precursors. The methodology shows that organogermanes can render a coupling efficiency comparable to the more established stannane and silane counterparts. Our coupling methodology (TBAF/moist toluene) was also found to promote the transfer of multiple phenyl groups from analogous chloro(phenyl)silanes and stannanes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The enzyme S-adenosyl-L-homocysteine (AdoHey) hydrolase effects hydrolytic cleavage of AdoHcy to adenosine (Ado) and L-homocysteine (Hcy). The cellular levels of AdoHcy and Hcy are critical because AdoHcy is a potent feedback inhibitor of crucial transmethylation enzymes. Also, elevated plasma levels of Hcy in humans have been shown to be a risk factor in coronary artery disease. On the basis of the previous finding that AdoHcy hydrolase is able to add the enzyme-sequestered water molecule across the 5',6'-double bond of (halo or dihalohomovinyl)-adenosines causing covalent binding inhibition, we designed and synthesized AdoHcy analogues with the 5',6'-olefin motif incorporated in place of the carbon-5' and sulfur atoms. From the available synthetic methods we chose two independent approaches: the first approach was based on the construction of a new C5'- C6' double bond via metathesis reactions, and the second approach was based on the formation of a new C6'-C7' single bond via Pd-catalyzed cross-couplings. Cross-metathesis of the suitably protected 5'-deoxy-5'-methyleneadenosine with racemic 2-amino-5-hexenoate in the presence of Hoveyda-Grubb's catalyst followed by standard deprotection afforded the desired analogue as 5'E isomer of the inseparable mixture of 9'RIS diastereomers. Metathesis of chiral homoallylglycine [(2S)-amino-5-hexenoate] produced AdoHcy analogue with established stereochemistry E at C5'atom and S at C9' atom. The 5'-bromovinyl analogue was synthesized using the brominationdehydrobromination strategy with pyridinium tribromide and DBU. Since literature reports on the Pd-catalyzed monoalkylation of dihaloalkenes (Csp2-Csp3 coupling) were scarce, we were prompted to undertake model studies on Pdcatalyzed coupling between vinyl dihalides and alkyl organometallics. The 1-fluoro-1- haloalkenes were found to undergo Negishi couplings with alkylzinc bromides to give multisubstituted fluoroalkenes. The alkylation was trans-selective affording pure Zfluoroalkenes. The highest yields were obtained with PdCl 2(dppb) catalyst, but the best stereochemical outcome was obtained with less reactive Pd(PPh3)4 . Couplings of 1,1- dichloro-and 1,1-dibromoalkenes with organozinc reagents resulted in the formation of monocoupled 1-halovinyl product.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Palladium (Pd)-catalyzed cross-coupling reactions are among the most important methods in organic synthesis. We report the discovery of highly efficient and green photocatalytic processes by which cross-coupling reactions, including Sonogashira, Stille, Hiyama, Ullmann, and Buchwald–Hartwig reactions, can be driven with visible light at temperatures slightly above room temperature using alloy nanoparticles of gold and Pd on zirconium oxide, thus achieving high yields. The alloy nanoparticles absorb visible light, and their conduction electrons gain energy, which is available at the surface Pd sites. Results of the density functional theory calculations indicate that transfer of the light excited electrons from the nanoparticle surface to the reactant molecules adsorbed on the nanoparticle surface activates the reactants. When the light intensity was increased, a higher reaction rate was observed, because of the increased population of photoexcited electrons. The irradiation wavelength also has an important impact on the reaction rates. Ultraviolet irradiation can drive some reactions with the chlorobenzene substrate, while visible light irradiation failed to, and substantially improve the yields of the reactions with the bromobenzene substrate. The discovery reveals the possibility of using low-energy and -density sources such as sunlight to drive chemical transformations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dimeric phenolic compounds lignans and dilignols form in the so-called oxidative coupling reaction of phenols. Enzymes such as peroxidases and lac-cases catalyze the reaction using hydrogen peroxide or oxygen respectively as oxidant generating phenoxy radicals which couple together according to certain rules. In this thesis, the effects of the structures of starting materials mono-lignols and the effects of reaction conditions such as pH and solvent system on this coupling mechanism and on its regio- and stereoselectivity have been studied. After the primary coupling of two phenoxy radicals a very reactive quinone me-thide intermediate is formed. This intermediate reacts quickly with a suitable nucleophile which can be, for example, an intramolecular hydroxyl group or another nucleophile such as water, methanol, or a phenolic compound in the reaction system. This reaction is catalyzed by acids. After the nucleophilic addi-tion to the quinone methide, other hydrolytic reactions, rearrangements, and elimination reactions occur leading finally to stable dimeric structures called lignans or dilignols. Similar reactions occur also in the so-called lignification process when monolignol (or dilignol) reacts with the growing lignin polymer. New kinds of structures have been observed in this thesis. The dimeric com-pounds with so-called spirodienone structure have been observed to form both in the dehydrodimerization of methyl sinapate and in the beta-1-type cross-coupling reaction of two different monolignols. This beta-1-type dilignol with a spirodienone structure was the first synthetized and published dilignol model compound, and at present, it has been observed to exist as a fundamental construction unit in lignins. The enantioselectivity of the oxidative coupling reaction was also studied for obtaining enantiopure lignans and dilignols. A rather good enantioselectivity was obtained in the oxidative coupling reaction of two monolignols with chiral auxiliary substituents using peroxidase/H2O2 as an oxidation system. This observation was published as one of the first enantioselective oxidative coupling reaction of phenols. Pure enantiomers of lignans were also obtained by using chiral cryogenic chromatography as a chiral resolution technique. This technique was shown to be an alternative route to prepare enantiopure lignans or lignin model compounds in a preparative scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Palladium catalyzed cross-coupling reaction of hydrazones with aryl halides in the absence of external ligand is reported. The versatility of this coupling reaction is demonstrated in showcasing the selectivity of coupling reaction in the presence of hydroxyl and amine functional groups. This method allows synthesizing a variety of heterocyclic compounds, which are difficult to access from other traditional methods and are not synthesized by employing similar coupling reactions. Application of the present methodology is validated in tandem reaction of ketones to the corresponding substituted olefins in a single pot experiment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Boronic pinacol ester group is not reactive in Kumada, Heck and Stille coupling reaction conditions. Fluorene-based sophisticated organoboron compounds were synthesized by means of Palladium catalyzed Kumada, Heck and Stille cross-coupling reactions from halofluorenyl boronic esters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The palladium-catalyzed cross-coupling reaction of 3,4-bis(tributylstannyl)furan-2(5H)-one using chelating ligand or polar solvent gives mixtures of single and double coupled products, even when one equivalent of halide coupling partner is used. After optimization, the double coupling reaction was shown to be general, with the use of two equivalents of aryl iodides giving 3,4-disubstituted furanones, The reaction using benzyl bromides proceeds at lower temperatures than the corresponding coupling using aryl iodides, giving dibenzylfuranones. The methodology has been exemplified in a synthesis of (+/-)-hinokinin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Through a cross-coupling reaction, aryl phosphonates are produced in high yields when the corresponding aryl bromides are reacted with a gold phosphorylating agent in the presence of a palladium catalyst and an appropriate ligand. To the best of our knowledge, this transformation is the first example involving the transfer of a phosphonate functional group from a gold complex to palladium that has been reported. Throughout the investigation, three gold phosphorylating agents were screened for activity towards the phosphorylation of aryl bromides. Aryl bromides with electrondonating and electron-withdrawing groups were successfully employed in the crosscoupling reactions. All cross-coupling reactions were carried out in THF at room temperature (25ºC) or in a microwave reactor (CEM Discover) at 60ºC for 30 or 60 minutes. The effects of changing reaction parameters such as time, temperature, catalyst and free ligand loading have been investigated. All aryl bromide substrates tested in the cross-coupling reactions produced phosphorylated products.