898 resultados para Cardiac pacemakers.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiac pacemakers are routinely used for the treatment of bradyarrhythmias. Contemporary pacemakers are reliable and allow for a patient specific programming. However, pacemaker replacements due to battery depletion are common (~25 % of all implantation procedures) and bear the risk of complications. Batteryless pacemakers may allow overcoming this limitation. To power a batteryless pacemaker, a mechanism for intracorporeal energy harvesting is required. Such a generator may consist out of subcutaneously implanted solar cells, transforming the small amount of transcutaneously available light into electrical energy. Alternatively, intravascular turbines may harvest energy from the blood flow. Energy may also be harvested from the ventricular wall motion by a dedicated mechanical clockwork converting motion into electrical energy. All these approaches have successfully been tested in vivo. Pacemaker leads constitute another Achilles heel of contemporary pacemakers. Thus, leadless devices are desired. Miniaturized pacemaker circuits and suitable energy harvesting mechanisms (incorporated in a single device) may allow catheter-based implantation of the pacemaker in the heart. Such miniaturized battery- and leadless pacemakers would combine the advantages of both approaches and overcome major limitations of today’s systems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Procedural sedation and analgesia (PSA) administered by nurses in the cardiac catheterisation laboratory (CCL) is unlikely to yield serious complications. However, the safety of this practice is dependent on timely identification and treatment of depressed respiratory function. Aim: Describe respiratory monitoring in the CCL. Methods: Retrospective medical record audit of adult patients who underwent a procedure in the CCLs of one private hospital in Brisbane during May and June 2010. An electronic database was used to identify subjects and an audit tool ensured data collection was standardised. Results: Nurses administered PSA during 172/473 (37%) procedures including coronary angiographies, percutaneous coronary interventions, electrophysiology studies, radiofrequency ablations, cardiac pacemakers, implantable cardioverter defibrillators, temporary pacing leads and peripheral vascular interventions. Oxygen saturations were recorded during 160/172 (23%) procedures, respiration rate was recorded during 17/172 (10%) procedures, use of oxygen supplementation was recorded during 40/172 (23%) procedures and 13/172 (7.5%; 95% CI=3.59–11.41%) patients experienced oxygen desaturation. Conclusion: Although oxygen saturation was routinely documented, nurses did not regularly record respiration observations. It is likely that surgical draping and the requirement to minimise radiation exposure interfered with nurses’ ability to observe respiration. Capnography could overcome these barriers to respiration assessment as its accurate measurement of exhaled carbon dioxide coupled with the easily interpretable waveform output it produces, which displays a breath-by-breath account of ventilation, enables identification of respiratory depression in real-time. Results of this audit emphasise the need to ascertain the clinical benefits associated with using capnography to assess ventilation during PSA in the CCL.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Electromagnetic fields arising from magnetic resonance imaging (MRI) can cause various clinically relevant functional disturbances in patients with cardiac pacemakers. Consequently, an implanted pacemaker is generally considered a contraindication for an MRI scan. With approximately 60 million MRI scans performed worldwide per year, MRI may be indicated for an estimated majority of pacemaker patients during the lifetime of their pacemakers. The availability of MR conditional pacemakers with CE labelling is of particular advantage since they allow the safe use of pacemakers in MRI. In this article the current state of knowledge on pacemakers and MR imaging is discussed. We present the results of a survey conducted among Swiss radiologists to assess current practice in patients with pacemakers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Prepared for U. S. Atomic Energy Commission by Nuclear Materials and Equipment Corporation, Apollo, Penn.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ageing population and a multitude of neurological and cardiovascular illnesses that cannot be mitigated by medication alone have resulted in a significant growth in the number of patients that require implantable electronic devices. These range from sensors, gastric and cardiac pacemakers, cardioverter defibrillators, to deep brain, nerve, and bone stimulators. Long-term implants present specific engineering challenges, including low energy consumption and stable performance. Resorbable electronics may offer excellent short-term performance without the need for surgical removal. However, most electronic materials have poor bio- and cytocompatibility, resulting in immune reactions and infections. This paper reviews the current situation and highlights challenges for future advancements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Software-based control of life-critical embedded systems has become increasingly complex, and to a large extent has come to determine the safety of the human being. For example, implantable cardiac pacemakers have over 80,000 lines of code which are responsible for maintaining the heart within safe operating limits. As firmware-related recalls accounted for over 41% of the 600,000 devices recalled in the last decade, there is a need for rigorous model-driven design tools to generate verified code from verified software models. To this effect, we have developed the UPP2SF model-translation tool, which facilitates automatic conversion of verified models (in UPPAAL) to models that may be simulated and tested (in Simulink/Stateflow). We describe the translation rules that ensure correct model conversion, applicable to a large class of models. We demonstrate how UPP2SF is used in themodel-driven design of a pacemaker whosemodel is (a) designed and verified in UPPAAL (using timed automata), (b) automatically translated to Stateflow for simulation-based testing, and then (c) automatically generated into modular code for hardware-level integration testing of timing-related errors. In addition, we show how UPP2SF may be used for worst-case execution time estimation early in the design stage. Using UPP2SF, we demonstrate the value of integrated end-to-end modeling, verification, code-generation and testing process for complex software-controlled embedded systems. © 2014 ACM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Human ICT implants, such as RFID implants, cochlear implants, cardiac pacemakers, Deep Brain Stimulation, bionic limbs connected to the nervous system, and networked cognitive prostheses, are becoming increasingly complex. With ever-growing data processing functionalities in these implants, privacy and security become vital concerns. Electronic attacks on human ICT implants can cause significant harm, both to implant subjects and to their environment. This paper explores the vulnerabilities which human implants pose to crime victimisation in light of recent technological developments, and analyses how the law can deal with emerging challenges of what may well become the next generation of cybercrime: attacks targeted at technology implanted in the human body. After a state-of-the-art description of relevant types of human implants and a discussion how these implants challenge existing perceptions of the human body, we describe how various modes of attacks, such as sniffing, hacking, data interference, and denial of service, can be committed against implants. Subsequently, we analyse how these attacks can be assessed under current substantive and procedural criminal law, drawing on examples from UK and Dutch law. The possibilities and limitations of cybercrime provisions (eg, unlawful access, system interference) and bodily integrity provisions (eg, battery, assault, causing bodily harm) to deal with human-implant attacks are analysed. Based on this assessment, the paper concludes that attacks on human implants are not only a new generation in the evolution of cybercrime, but also raise fundamental questions on how criminal law conceives of attacks. Traditional distinctions between physical and non-physical modes of attack, between human bodies and things, between exterior and interior of the body need to be re-interpreted in light of developments in human implants. As the human body and technology become increasingly intertwined, cybercrime legislation and body-integrity crime legislation will also become intertwined, posing a new puzzle that legislators and practitioners will sooner or later have to solve.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Autonomous system applications are typically limited by the power supply operational lifetime when battery replacement is difficult or costly. A trade-off between battery size and battery life is usually calculated to determine the device capability and lifespan. As a result, energy harvesting research has gained importance as society searches for alternative energy sources for power generation. For instance, energy harvesting has been a proven alternative for powering solar-based calculators and self-winding wristwatches. Thus, the use of energy harvesting technology can make it possible to assist or replace batteries for portable, wearable, or surgically-implantable autonomous systems. Applications such as cardiac pacemakers or electrical stimulation applications can benefit from this approach since the number of surgeries for battery replacement can be reduced or eliminated. Research on energy scavenging from body motion has been investigated to evaluate the feasibility of powering wearable or implantable systems. Energy from walking has been previously extracted using generators placed on shoes, backpacks, and knee braces while producing power levels ranging from milliwatts to watts. The research presented in this paper examines the available power from walking and running at several body locations. The ankle, knee, hip, chest, wrist, elbow, upper arm, side of the head, and back of the head were the chosen target localizations. Joints were preferred since they experience the most drastic acceleration changes. For this, a motor-driven treadmill test was performed on 11 healthy individuals at several walking (1-4 mph) and running (2-5 mph) speeds. The treadmill test provided the acceleration magnitudes from the listed body locations. Power can be estimated from the treadmill evaluation since it is proportional to the acceleration and frequency of occurrence. Available power output from walking was determined to be greater than 1mW/cm³ for most body locations while being over 10mW/cm³ at the foot and ankle locations. Available power from running was found to be almost 10 times higher than that from walking. Most energy harvester topologies use linear generator approaches that are well suited to fixed-frequency vibrations with sub-millimeter amplitude oscillations. In contrast, body motion is characterized with a wide frequency spectrum and larger amplitudes. A generator prototype based on self-winding wristwatches is deemed to be appropriate for harvesting body motion since it is not limited to operate at fixed-frequencies or restricted displacements. Electromagnetic generation is typically favored because of its slightly higher power output per unit volume. Then, a nonharmonic oscillating rotational energy scavenger prototype is proposed to harness body motion. The electromagnetic generator follows the approach from small wind turbine designs that overcome the lack of a gearbox by using a larger number of coil and magnets arrangements. The device presented here is composed of a rotor with multiple-pole permanent magnets having an eccentric weight and a stator composed of stacked planar coils. The rotor oscillations induce a voltage on the planar coil due to the eccentric mass unbalance produced by body motion. A meso-scale prototype device was then built and evaluated for energy generation. The meso-scale casing and rotor were constructed on PMMA with the help of a CNC mill machine. Commercially available discrete magnets were encased in a 25mm rotor. Commercial copper-coated polyimide film was employed to manufacture the planar coils using MEMS fabrication processes. Jewel bearings were used to finalize the arrangement. The prototypes were also tested at the listed body locations. A meso-scale generator with a 2-layer coil was capable to extract up to 234 µW of power at the ankle while walking at 3mph with a 2cm³ prototype for a power density of 117 µW/cm³. This dissertation presents the analysis of available power from walking and running at different speeds and the development of an unobtrusive miniature energy harvesting generator for body motion. Power generation indicates the possibility of powering devices by extracting energy from body motion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bradyarrhythmias are caused by a disturbed impulse formation in the sinus node and/or a disturbed impulse conduction and can be subclassified clinically as sinus node dysfunction, atrioventricular (AV) block, or functional bradycardia. Persistent bradycardia can be diagnosed by standard ECG. For diagnosis of intermittent bradycardia, often long-term ECG monitoring and/or additional testing is necessary. Symptomatic bradycardias are the standard indication for cardiac pacing after exclusion of reversible causes. Since sinus node dysfunction is associated with a good prognosis, pacing in this condition is only indicated in the presence of bradycardia-related symptoms. For prognostic reasons, pacemaker implantation is indicated in third degree AV block and second degree AV block Mobitz Type II, even if asymptomatic. Cardiac pacing for recurrent unpredictable neurocardiogenic syncope due to a cardioinhibitory reflex should be considered in certain circumstances. The implantation of cardiac pacemakers has been performed for more than half of a century. Due to the enormous technological progress, pacemaker implantations can nowadays be performed under local anesthesia in an outpatient setting. However, complications of pacemaker therapy are still not uncommon.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

AIMS Today's cardiac pacemakers are powered by batteries with limited energy capacity. As the battery's lifetime ends, the pacemaker needs to be replaced. This surgical re-intervention is costly and bears the risk of complications. Thus, a pacemaker without primary batteries is desirable. The goal of this study was to test whether transcutaneous solar light could power a pacemaker. METHODS AND RESULTS We used a three-step approach to investigate the feasibility of sunlight-powered cardiac pacing. First, the harvestable power was estimated. Theoretically, a subcutaneously implanted 1 cm(2) solar module may harvest ∼2500 µW from sunlight (3 mm implantation depth). Secondly, ex vivo measurements were performed with solar cells placed under pig skin flaps exposed to a solar simulator and real sunlight. Ex vivo measurements under real sunlight resulted in a median output power of 4941 µW/cm(2) [interquartile range (IQR) 3767-5598 µW/cm(2), median skin flap thickness 3.0 mm (IQR 2.7-3.3 mm)]. The output power strongly depended on implantation depth (ρSpearman = -0.86, P < 0.001). Finally, a batteryless single-chamber pacemaker powered by a 3.24 cm(2) solar module was implanted in vivo in a pig to measure output power and to pace. In vivo measurements showed a median output power of >3500 µW/cm(2) (skin flap thickness 2.8-3.84 mm). Successful batteryless VVI pacing using a subcutaneously implanted solar module was performed. CONCLUSION Based on our results, we estimate that a few minutes of direct sunlight (irradiating an implanted solar module) allow powering a pacemaker for 24 h using a suitable energy storage. Thus, powering a pacemaker by sunlight is feasible and may be an alternative energy supply for tomorrow's pacemakers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Contemporary pacemakers (PMs) are powered by primary batteries with a limited energy-storing capacity. PM replacements because of battery depletion are common and unpleasant and bear the risk of complications. Batteryless PMs that harvest energy inside the body may overcome these limitations. OBJECTIVE: The goal of this study was to develop a batteryless PM powered by a solar module that converts transcutaneous light into electrical energy. METHODS: Ex vivo measurements were performed with solar modules placed under pig skin flaps exposed to different irradiation scenarios (direct sunlight, shade outdoors, and indoors). Subsequently, 2 sunlight-powered PMs featuring a 4.6-cm2 solar module were implanted in vivo in a pig. One prototype, equipped with an energy buffer, was run in darkness for several weeks to simulate a worst-case scenario. RESULTS: Ex vivo, median output power of the solar module was 1963 μW/cm2 (interquartile range [IQR] 1940-2107 μW/cm2) under direct sunlight exposure outdoors, 206 μW/cm2 (IQR 194-233 μW/cm2) in shade outdoors, and 4 μW/cm2 (IQR 3.6-4.3 μW/cm2) indoors (current PMs use approximately 10-20 μW). Median skin flap thickness was 4.8 mm. In vivo, prolonged SOO pacing was performed even with short irradiation periods. Our PM was able to pace continuously at a rate of 125 bpm (3.7 V at 0.6 ms) for 1½ months in darkness. CONCLUSION: Tomorrow's PMs might be batteryless and powered by sunlight. Because of the good skin penetrance of infrared light, a significant amount of energy can be harvested by a subcutaneous solar module even indoors. The use of an energy buffer allows periods of darkness to be overcome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy harvesting devices are widely discussed as an alternative power source for todays active implantable medical devices. Repeated battery replacement procedures can be avoided by extending the implants life span, which is the goal of energy harvesting concepts. This reduces the risk of complications for the patient and may even reduce device size. The continuous and powerful contractions of a human heart ideally qualify as a battery substitute. In particular, devices in close proximity to the heart such as pacemakers, defibrillators or bio signal (ECG) recorders would benefit from this alternative energy source. The clockwork of an automatic wristwatch was used to transform the hearts kinetic energy into electrical energy. In order to qualify as a continuous energy supply for the consuming device, the mechanism needs to demonstrate its harvesting capability under various conditions. Several in-vivo recorded heart motions were used as input of a mathematical model to optimize the clockworks original conversion efficiency with respect to myocardial contractions. The resulting design was implemented and tested during in-vitro and in-vivo experiments, which demonstrated the superior sensitivity of the new design for all tested heart motions.