961 resultados para Cardiac output


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background The accurate measurement of Cardiac output (CO) is vital in guiding the treatment of critically ill patients. Invasive or minimally invasive measurement of CO is not without inherent risks to the patient. Skilled Intensive Care Unit (ICU) nursing staff are in an ideal position to assess changes in CO following therapeutic measures. The USCOM (Ultrasonic Cardiac Output Monitor) device is a non-invasive CO monitor whose clinical utility and ease of use requires testing. Objectives To compare cardiac output measurement using a non-invasive ultrasonic device (USCOM) operated by a non-echocardiograhically trained ICU Registered Nurse (RN), with the conventional pulmonary artery catheter (PAC) using both thermodilution and Fick methods. Design Prospective observational study. Setting and participants Between April 2006 and March 2007, we evaluated 30 spontaneously breathing patients requiring PAC for assessment of heart failure and/or pulmonary hypertension at a tertiary level cardiothoracic hospital. Methods SCOM CO was compared with thermodilution measurements via PAC and CO estimated using a modified Fick equation. This catheter was inserted by a medical officer, and all USCOM measurements by a senior ICU nurse. Mean values, bias and precision, and mean percentage difference between measures were determined to compare methods. The Intra-Class Correlation statistic was also used to assess agreement. The USCOM time to measure was recorded to assess the learning curve for USCOM use performed by an ICU RN and a line of best fit demonstrated to describe the operator learning curve. Results In 24 of 30 (80%) patients studied, CO measures were obtained. In 6 of 30 (20%) patients, an adequate USCOM signal was not achieved. The mean difference (±standard deviation) between USCOM and PAC, USCOM and Fick, and Fick and PAC CO were small, −0.34 ± 0.52 L/min, −0.33 ± 0.90 L/min and −0.25 ± 0.63 L/min respectively across a range of outputs from 2.6 L/min to 7.2 L/min. The percent limits of agreement (LOA) for all measures were −34.6% to 17.8% for USCOM and PAC, −49.8% to 34.1% for USCOM and Fick and −36.4% to 23.7% for PAC and Fick. Signal acquisition time reduced on average by 0.6 min per measure to less than 10 min at the end of the study. Conclusions In 80% of our cohort, USCOM, PAC and Fick measures of CO all showed clinically acceptable agreement and the learning curve for operation of the non-invasive USCOM device by an ICU RN was found to be satisfactorily short. Further work is required in patients receiving positive pressure ventilation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ObjectiveTo compare cardiac output (CO) measured by Doppler echocardiography and thermodilution techniques in spontaneously breathing dogs during continuous infusion of propofol. To do so, CO was obtained using the thermodilution method (CO(TD)) and Doppler evaluation of pulmonary flow (CO(DP)) and aortic flow (CO(DA)).Study designProspective cohort study.AnimalsEight adult dogs weighing 8.3 +/- 2.0 kg.MethodsPropofol was used for induction (7.5 +/- 1.9 mg kg-1 IV) followed by a continuous rate infusion at 0.7 mg kg-1 minute-1. The animals were positioned in left lateral recumbency on an echocardiography table that allowed for positioning of the transducer at the 3rd and 5th intercostal spaces of the left hemithorax for Doppler evaluation of pulmonary and aortic valves, respectively. CO(DP) and CO(DA) were calculated from pulmonary and aortic velocity spectra, respectively. A pulmonary artery catheter was inserted via the jugular vein and positioned inside the lumen of the pulmonary artery in order to evaluate CO(TD). The first measurement of CO(TD), CO(DP) and CO(DA) was performed 30 minutes after beginning continuous infusion (T0) and then at 15-minute intervals (T15, T30, T45 and T60). Numeric data were submitted to two-way anova for repeated measurements, Pearson's correlation coefficient and Bland & Altman analysis. Data are presented as mean +/- SD.ResultsAt T0, CO(TD) was lower than CO(DA). CO(DA) was higher than CO(TD) and CO(DP) at T30, T45 and T60. The difference between the CO(TD) and CO(DP), when all data were included, was -0.04 +/- 0.22 L minute-1 and Pearson's correlation coefficient (r) was 0.86. The difference between the CO(TD) and CO(DA) was -0.87 +/- 0.54 L minute-1 and r = 0.69. For CO(TD) and CO(DP), the difference was -0.82 +/- 0.59 L minute-1 and r = 0.61.ConclusionDoppler evaluation of pulmonary flow was a clinically acceptable method for assessing the CO in propofol-anesthetized dogs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives To consensually validate the operational definitions of the nursing diagnoses activity intolerance, excessive fluid volume, and decreased cardiac output in patients with decompensated heart failure. Method Consensual validation was performed in two stages: analogy by similarity of defining characteristics, and development of operational definitions and validation with experts. Results A total of 38 defining characteristics were found. Operational definitions were developed and content-validated. One hundred percent of agreement was achieved among the seven experts after five rounds. Ascites was added in the nursing diagnosis excessive fluid volume. Conclusion The consensual validation improves interpretation of human response, grounding the selection of nursing interventions and contributing to improved nursing outcomes. Implications for Practice Support the assessment of patients with decompensated heart failure. Objetivos Realizar a validacAo consensual das definicoes operacionais dos diagnosticos de enfermagem Intolerancia a atividade, Volume de liquidos excessivo e Debito cardiaco diminuido em pacientes com insuficiencia cardiaca descompensada. Metodo ValidacAo consensual em duas etapas: Analogia de semelhanca das caracteristicas definidoras e desenvolvimento de definicoes operacionais e validacAo com expertst. Resultados Foram encontradas 38 caracteristicas definidoras para os diagnosticos de enfermagem. Suas definicoes operacionais foram desenvolvidas e seu conteudo validado. Os resultados mostram que houve 100% de concordancia entre os sete experts apos cinco rodada. As definicoes operacionais foram classificadas com base no nivel de concordanica. Ascite foi acrescentada ao diagnostico Volume de liquidos excessivo. ConclusAo A validacAo consensual melhora a interpretacAo das respostas humanas, embasando a selecAo de intervencoes de enfermagem e contribuindo para melhorar os resultados. Implicacoes Para A Pratica Apoio a avaliacAo dos pacientes com insuficiencia cardiaca descompensada.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: Hemodynamic support is aimed at providing adequate O-2 delivery to the tissues; most interventions target O-2 delivery increase. Mixed venous O-2 saturation is a frequently used parameter to evaluate the adequacy of O-2 delivery. METHODS: We describe a mathematical model to compare the effects of increasing O-2 delivery on venous oxygen saturation through increases in the inspired O-2 fraction versus increases in cardiac output. The model was created based on the lungs, which were divided into shunted and non-shunted areas, and on seven peripheral compartments, each with normal values of perfusion, optimal oxygen consumption, and critical O-2 extraction rate. O-2 delivery was increased by changing the inspired fraction of oxygen from 0.21 to 1.0 in steps of 0.1 under conditions of low (2.0 L.min(-1)) or normal (6.5 L.min(-1)) cardiac output. The same O-2 delivery values were also obtained by maintaining a fixed O-2 inspired fraction value of 0.21 while changing cardiac output. RESULTS: Venous oxygen saturation was higher when produced through increases in inspired O-2 fraction versus increases in cardiac output, even at the same O-2 delivery and consumption values. Specifically, at high inspired O-2 fractions, the measured O-2 saturation values failed to detect conditions of low oxygen supply. CONCLUSIONS: The mode of O-2 delivery optimization, specifically increases in the fraction of inspired oxygen versus increases in cardiac output, can compromise the capability of the "venous O-2 saturation" parameter to measure the adequacy of oxygen supply. Consequently, venous saturation at high inspired O-2 fractions should be interpreted with caution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] To determine central and peripheral hemodynamic responses to upright leg cycling exercise, nine physically active men underwent measurements of arterial blood pressure and gases, as well as femoral and subclavian vein blood flows and gases during incremental exercise to exhaustion (Wmax). Cardiac output (CO) and leg blood flow (BF) increased in parallel with exercise intensity. In contrast, arm BF remained at 0.8 l/min during submaximal exercise, increasing to 1.2 +/- 0.2 l/min at maximal exercise (P < 0.05) when arm O(2) extraction reached 73 +/- 3%. The leg received a greater percentage of the CO with exercise intensity, reaching a value close to 70% at 64% of Wmax, which was maintained until exhaustion. The percentage of CO perfusing the trunk decreased with exercise intensity to 21% at Wmax, i.e., to approximately 5.5 l/min. For a given local Vo(2), leg vascular conductance (VC) was five- to sixfold higher than arm VC, despite marked hemoglobin deoxygenation in the subclavian vein. At peak exercise, arm VC was not significantly different than at rest. Leg Vo(2) represented approximately 84% of the whole body Vo(2) at intensities ranging from 38 to 100% of Wmax. Arm Vo(2) contributed between 7 and 10% to the whole body Vo(2). From 20 to 100% of Wmax, the trunk Vo(2) (including the gluteus muscles) represented between 14 and 15% of the whole body Vo(2). In summary, vasoconstrictor signals efficiently oppose the vasodilatory metabolites in the arms, suggesting that during whole body exercise in the upright position blood flow is differentially regulated in the upper and lower extremities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] With altitude acclimatization, blood hemoglobin concentration increases while plasma volume (PV) and maximal cardiac output (Qmax) decrease. This investigation aimed to determine whether reduction of Qmax at altitude is due to low circulating blood volume (BV). Eight Danish lowlanders (3 females, 5 males: age 24.0 +/- 0.6 yr; mean +/- SE) performed submaximal and maximal exercise on a cycle ergometer after 9 wk at 5,260 m altitude (Mt. Chacaltaya, Bolivia). This was done first with BV resulting from acclimatization (BV = 5.40 +/- 0.39 liters) and again 2-4 days later, 1 h after PV expansion with 1 liter of 6% dextran 70 (BV = 6.32 +/- 0.34 liters). PV expansion had no effect on Qmax, maximal O2 consumption (VO2), and exercise capacity. Despite maximal systemic O2 transport being reduced 19% due to hemodilution after PV expansion, whole body VO2 was maintained by greater systemic O2 extraction (P < 0.05). Leg blood flow was elevated (P < 0.05) in hypervolemic conditions, which compensated for hemodilution resulting in similar leg O2 delivery and leg VO2 during exercise regardless of PV. Pulmonary ventilation, gas exchange, and acid-base balance were essentially unaffected by PV expansion. Sea level Qmax and exercise capacity were restored with hyperoxia at altitude independently of BV. Low BV is not a primary cause for reduction of Qmax at altitude when acclimatized. Furthermore, hemodilution caused by PV expansion at altitude is compensated for by increased systemic O2 extraction with similar peak muscular O2 delivery, such that maximal exercise capacity is unaffected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] A universal O2 sensor presumes that compensation for impaired O2 delivery is triggered by low O2 tension, but in humans, comparisons of compensatory responses to altered arterial O2 content (CaO2) or tension (PaO2) have not been reported. To directly compare cardiac output (QTOT) and leg blood flow (LBF) responses to a range of CaO2 and PaO2, seven healthy young men were studied during two-legged knee extension exercise with control hemoglobin concentration ([Hb] = 144.4 +/- 4 g/l) and at least 1 wk later after isovolemic hemodilution ([Hb] = 115 +/- 2 g/l). On each study day, subjects exercised twice at 30 W and on to voluntary exhaustion with an FIO2 of 0.21 or 0.11. The interventions resulted in two conditions with matched CaO2 but markedly different PaO2 (hypoxia and anemia) and two conditions with matched PaO2 and different CaO2 (hypoxia and anemia + hypoxia). PaO2 varied from 46 +/- 3 Torr in hypoxia to 95 +/- 3 Torr (range 37 to >100) in anemia (P < 0.001), yet LBF at exercise was nearly identical. However, as CaO2 dropped from 190 +/- 5 ml/l in control to 132 +/- 2 ml/l in anemia + hypoxia (P < 0.001), QTOT and LBF at 30 W rose to 12.8 +/- 0.8 and 7.2 +/- 0.3 l/min, respectively, values 23 and 47% above control (P < 0.01). Thus regulation of QTOT, LBF, and arterial O2 delivery to contracting intact human skeletal muscle is dependent for signaling primarily on CaO2, not PaO2. This finding suggests that factors related to CaO2 or [Hb] may play an important role in the regulation of blood flow during exercise in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arterial pressure-based cardiac output monitors (APCOs) are increasingly used as alternatives to thermodilution. Validation of these evolving technologies in high-risk surgery is still ongoing. In liver transplantation, FloTrac-Vigileo (Edwards Lifesciences) has limited correlation with thermodilution, whereas LiDCO Plus (LiDCO Ltd.) has not been tested intraoperatively. Our goal was to directly compare the 2 proprietary APCO algorithms as alternatives to pulmonary artery catheter thermodilution in orthotopic liver transplantation (OLT). The cardiac index (CI) was measured simultaneously in 20 OLT patients at prospectively defined surgical landmarks with the LiDCO Plus monitor (CI(L)) and the FloTrac-Vigileo monitor (CI(V)). LiDCO Plus was calibrated according to the manufacturer's instructions. FloTrac-Vigileo did not require calibration. The reference CI was derived from pulmonary artery catheter intermittent thermodilution (CI(TD)). CI(V)-CI(TD) bias ranged from -1.38 (95% confidence interval = -2.02 to -0.75 L/minute/m(2), P = 0.02) to -2.51 L/minute/m(2) (95% confidence interval = -3.36 to -1.65 L/minute/m(2), P < 0.001), and CI(L)-CI(TD) bias ranged from -0.65 (95% confidence interval = -1.29 to -0.01 L/minute/m(2), P = 0.047) to -1.48 L/minute/m(2) (95% confidence interval = -2.37 to -0.60 L/minute/m(2), P < 0.01). For both APCOs, bias to CI(TD) was correlated with the systemic vascular resistance index, with a stronger dependence for FloTrac-Vigileo. The capability of the APCOs for tracking changes in CI(TD) was assessed with a 4-quadrant plot for directional changes and with receiver operating characteristic curves for specificity and sensitivity. The performance of both APCOs was poor in detecting increases and fair in detecting decreases in CI(TD). In conclusion, the calibrated and uncalibrated APCOs perform differently during OLT. Although the calibrated APCO is less influenced by changes in the systemic vascular resistance, neither device can be used interchangeably with thermodilution to monitor cardiac output during liver transplantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Induced mild hypothermia after cardiac arrest interferes with clinical assessment of the cardiovascular status of patients. In this situation, non-invasive cardiac output measurement could be useful. Unfortunately, arterial pulse contour is altered by temperature, and the performance of devices using arterial blood pressure contour analysis to derive cardiac output may be insufficient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction Acute hemodynamic instability increases morbidity and mortality. We investigated whether early non-invasive cardiac output monitoring enhances hemodynamic stabilization and improves outcome. Methods A multicenter, randomized controlled trial was conducted in three European university hospital intensive care units in 2006 and 2007. A total of 388 hemodynamically unstable patients identified during their first six hours in the intensive care unit (ICU) were randomized to receive either non-invasive cardiac output monitoring for 24 hrs (minimally invasive cardiac output/MICO group; n = 201) or usual care (control group; n = 187). The main outcome measure was the proportion of patients achieving hemodynamic stability within six hours of starting the study. Results The number of hemodynamic instability criteria at baseline (MICO group mean 2.0 (SD 1.0), control group 1.8 (1.0); P = .06) and severity of illness (SAPS II score; MICO group 48 (18), control group 48 (15); P = .86)) were similar. At 6 hrs, 45 patients (22%) in the MICO group and 52 patients (28%) in the control group were hemodynamically stable (mean difference 5%; 95% confidence interval of the difference -3 to 14%; P = .24). Hemodynamic support with fluids and vasoactive drugs, and pulmonary artery catheter use (MICO group: 19%, control group: 26%; P = .11) were similar in the two groups. The median length of ICU stay was 2.0 (interquartile range 1.2 to 4.6) days in the MICO group and 2.5 (1.1 to 5.0) days in the control group (P = .38). The hospital mortality was 26% in the MICO group and 21% in the control group (P = .34). Conclusions Minimally-invasive cardiac output monitoring added to usual care does not facilitate early hemodynamic stabilization in the ICU, nor does it alter the hemodynamic support or outcome. Our results emphasize the need to evaluate technologies used to measure stroke volume and cardiac output--especially their impact on the process of care--before any large-scale outcome studies are attempted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Failing cerebral blood flow (CBF) autoregulation may contribute to cerebral damage after traumatic brain injury (TBI). The purpose of this study was to describe the time course of CO(2)-dependent vasoreactivity, measured as CBF velocity in response to hyperventilation (vasomotor reactivity [VMR] index). We included 13 patients who had had severe TBI, 8 of whom received norepinephrine (NE) based on clinical indication. In these patients, measurements were also performed after dobutamine administration, with a goal of increasing cardiac output by 30%. Blood flow velocity was measured with transcranial Doppler ultrasound in both hemispheres. All patients except one had an abnormal VMR index in at least one hemisphere within the first 24 h after TBI. In those patients who did not receive catecholamines, mean VMR index recovered within the first 48 to 72 h. In contrast, in patients who received NE within the first 48 h period, VMR index did not recover on the second day. Cardiac output and mean CBF velocity increased significantly during dobutamine administration, but VMR index did not change significantly. In conclusion, CO(2) vasomotor reactivity was abnormal in the first 24 h after TBI in most of the patients, but recovered within 48 h in those patients who did not receive NE, in contrast to those eventually receiving the drug. Addition of dobutamine to NE had variable but overall insignificant effects on CO(2) vasomotor reactivity.