995 resultados para Carbon accounting
Resumo:
Grassland management affects soil organic carbon (SOC) storage and can be used to mitigate greenhouse gas emissions. However, for a country to assess emission reductions due to grassland management, there must be an inventory method for estimating the change in SOC storage. The Intergovernmental Panel on Climate Change (IPCC) has developed a simple carbon accounting approach for this purpose, and here we derive new grassland management factors that represent the effect of changing management on carbon storage for this method. Our literature search identified 49 studies dealing with effects of management practices that either degraded or improved conditions relative to nominally managed grasslands. On average, degradation reduced SOC storage to 95% +/- 0.06 and 97% +/- 0.05 of carbon stored under nominal conditions in temperate and tropical regions, respectively. In contrast, improving grasslands with a single management activity enhanced SOC storage by 14% 0.06 and 17% +/- 0.05 in temperate and tropical regions, respectively, and with an additional improvement(s), storage increased by another 11% +/- 0.04. We applied the newly derived factor coefficients to analyze C sequestration potential for managed grasslands in the U.S., and found that over a 20-year period changing management could sequester from 5 to 142 Tg C yr(-1) or 0.1 to 0.9 Mg C ha(-1) yr(-1), depending on the level of change. This analysis provides revised factor coefficients for the IPCC method that can be used to estimate impacts of management; it also provides a methodological framework for countries to derive factor coefficients specific to conditions in their region.
Resumo:
The increase in global temperature has been attributed to increased atmospheric concentrations of greenhouse gases (GHG), mainly that of CO2. The threat of severe and complex socio-economic and ecological implications of climate change have initiated an international process that aims to reduce emissions, to increase C sinks, and to protect existing C reservoirs. The famous Kyoto protocol is an offspring of this process. The Kyoto protocol and its accords state that signatory countries need to monitor their forest C pools, and to follow the guidelines set by the IPCC in the preparation, reporting and quality assessment of the C pool change estimates. The aims of this thesis were i) to estimate the changes in carbon stocks vegetation and soil in the forests in Finnish forests from 1922 to 2004, ii) to evaluate the applied methodology by using empirical data, iii) to assess the reliability of the estimates by means of uncertainty analysis, iv) to assess the effect of forest C sinks on the reliability of the entire national GHG inventory, and finally, v) to present an application of model-based stratification to a large-scale sampling design of soil C stock changes. The applied methodology builds on the forest inventory measured data (or modelled stand data), and uses statistical modelling to predict biomasses and litter productions, as well as a dynamic soil C model to predict the decomposition of litter. The mean vegetation C sink of Finnish forests from 1922 to 2004 was 3.3 Tg C a-1, and in soil was 0.7 Tg C a-1. Soil is slowly accumulating C as a consequence of increased growing stock and unsaturated soil C stocks in relation to current detritus input to soil that is higher than in the beginning of the period. Annual estimates of vegetation and soil C stock changes fluctuated considerably during the period, were frequently opposite (e.g. vegetation was a sink but soil was a source). The inclusion of vegetation sinks into the national GHG inventory of 2003 increased its uncertainty from between -4% and 9% to ± 19% (95% CI), and further inclusion of upland mineral soils increased it to ± 24%. The uncertainties of annual sinks can be reduced most efficiently by concentrating on the quality of the model input data. Despite the decreased precision of the national GHG inventory, the inclusion of uncertain sinks improves its accuracy due to the larger sectoral coverage of the inventory. If the national soil sink estimates were prepared by repeated soil sampling of model-stratified sample plots, the uncertainties would be accounted for in the stratum formation and sample allocation. Otherwise, the increases of sampling efficiency by stratification remain smaller. The highly variable and frequently opposite annual changes in ecosystem C pools imply the importance of full ecosystem C accounting. If forest C sink estimates will be used in practice average sink estimates seem a more reasonable basis than the annual estimates. This is due to the fact that annual forest sinks vary considerably and annual estimates are uncertain, and they have severe consequences for the reliability of the total national GHG balance. The estimation of average sinks should still be based on annual or even more frequent data due to the non-linear decomposition process that is influenced by the annual climate. The methodology used in this study to predict forest C sinks can be transferred to other countries with some modifications. The ultimate verification of sink estimates should be based on comparison to empirical data, in which case the model-based stratification presented in this study can serve to improve the efficiency of the sampling design.
Resumo:
Includes Bibliography
Resumo:
This chapter explores the motivation behind potential carbon emission accounting fraud by corporations. There are several different possible risks of carbon emission accounting fraud which remain mostly overlooked by researchers to date, despite the fact that such frauds have a negative impact on a country’s economy as well as the real purpose of mitigating carbon emissions. The chapter offers discussion of some potential risks of carbon emission accounting fraud as well as related prevention policy. The study suggests that an effective mandatory carbon emission related fraud prevention policy is essential to eliminate opportunities to commit such fraud by corporations.
Resumo:
In recent years there has been growing concern about the emission trade balances of countries. This is due to the fact that countries with an open economy are active players in international trade. Trade is not only a major factor in forging a country’s economic structure, but contributes to the movement of embodied emissions beyond country borders. This issue is especially relevant from the carbon accounting policy and domestic production perspective, as it is known that the production-based principle is employed in the Kyoto agreement. The research described herein was designed to reveal the interdependence of countries on international trade and the corresponding embodied emissions both on national and on sectoral level and to illustrate the significance of the consumption-based emission accounting. It is presented here to what extent a consumption-based accounting would change the present system based on production-based accounting and allocation. The relationship of CO2 emission embodied in exports and embodied in imports is analysed here. International trade can blur the responsibility for the ecological effects of production and consumption and it can lengthen the link between consumption and its consequences. Input-output models are used in the methodology as they provide an appropriate framework for climate change accounting. The analysis comprises an international comparative study of four European countries (Germany, the United Kingdom, the Netherlands, and Hungary) with extended trading activities and carbon emissions. Moving from a production-based approach in climate policy to a consumption-based principle and allocation approach would help to increase the efficiency of emission reductions and would force countries to rethink their trading activities in order to decrease the environmental load of production activities. The results of this study show that it is important to distinguish between the two emission accounting approaches, both on the global and the local level.
Resumo:
Land-use change, particularly clearing of forests for agriculture, has contributed significantly to the observed rise in atmospheric carbon dioxide concentration. Concern about the impacts on climate has led to efforts to monitor and curtail the rapid increase in concentrations of carbon dioxide and other greenhouse gases in the atmosphere. Internationally, much of the current focus is on the Kyoto Protocol to the United Nations Framework Convention on Climate Change (UNFCCC). Although electing to not ratify the Protocol, Australia, as a party to the UNFCCC, reports on national greenhouse gas emissions, trends in emissions and abatement measures. In this paper we review the complex accounting rules for human activities affecting greenhouse gas fluxes in the terrestrial biosphere and explore implications and potential opportunities for managing carbon in the savanna ecosystems of northern Australia. Savannas in Australia are managed for grazing as well as for cultural and environmental values against a background of extreme climate variability and disturbance, notably fire. Methane from livestock and non-CO2 emissions from burning are important components of the total greenhouse gas emissions associated with management of savannas. International developments in carbon accounting for the terrestrial biosphere bring a requirement for better attribution of change in carbon stocks and more detailed and spatially explicit data on such characteristics of savanna ecosystems as fire regimes, production and type of fuel for burning, drivers of woody encroachment, rates of woody regrowth, stocking rates and grazing impacts. The benefits of improved biophysical information and of understanding the impacts on ecosystem function of natural factors and management options will extend beyond greenhouse accounting to better land management for multiple objectives.
Resumo:
This paper builds on and extends previous research to contribute to ongoing discussion on the use of resource and carbon accounting tools in regional policy making. The Northern Visions project has produced the first evidence-based footpath setting out the actions that need to be taken to achieve the step changes in the Ecological and Carbon Footprint of Northern Ireland. A range of policies and strategies were evaluated using the Resources and Energy Analysis Programme. The analysis provided the first regional evidence base that current sustainable development policy commitments would not lead to the necessary reductions in either the Ecological Footprint or carbon dioxide emissions. Building on previous applications of Ecological Footprint analysis in regional policy making, the research has demonstrated that there is a valuable role for Ecological and Carbon Footprint Analysis in policy appraisal. The use of Ecological and Carbon Footprint Analysis in regional policy making has been evaluated and recommendations made on ongoing methodological development. The authors hope that the research can provide insights for the ongoing use Ecological and Carbon Footprint Analysis in regional policy making and help set out the priorities for research to support this important policy area
Resumo:
Most research on carbon content of trees has focused on temperate tree species with little information existing on the carbon content of tropical tree species. This study investigated the variation in carbon content of selected tropical tree species and compared carbon content of Khaya spp from two ecozones in Ghana. Allometric equations developed for mixed-plantation stands for wet evergreen forest verified the expected strong relationship between tree volumes and dbh (r2>0.93) and volume and dbh2×height (r2>0.97). Carbon concentration, wood density and carbon content differed significantly among species. Volume at age 12 ranged from 0.01 to 1.04 m3 per tree, and wood density was highly variable among species, ranging from 0.27 to 0.76 g cm-3. This suggests that species specific density data is critical for accurate conversion of volumes derived from allometric relationships into carbon contents. Significant differences in density of Khaya spp existed between the wet and moist semi-deciduous ecozones. The baseline species-level information from this study will be useful for carbon accounting and development of carbon sequestration strategies in Ghana and other tropical African countries.
Resumo:
In recent years there has been a growing concern about the emission trade balance of countries. It is due to the fact that countries with an open economy are active players in the international trade, though trade is not only a major factor in forging a country’s economic structure anymore, but it does contribute to the movement of embodied emissions beyond the country borders. This issue is especially relevant from the carbon accounting policy’s point of view, as it is known that the production-based principle is in effect now in the Kyoto agreement. The study aims at revealing the interdependence of countries on international trade and its environmental impacts, and how the carbon accounting method plays a crucial role in evaluating a country’s environmental performance and its role in the climate mitigation processes. The input-output models are used in the methodology, as they provide an appropriate framework for this kind of environmental accounting; the analysis shows an international comparison of four European countries (Germany, the United Kingdom, the Netherlands, and Hungary) with extended trading activities and carbon emissions. Moving from the production-based approach in the climate policy, to the consumptionperspective principle and allocation [15], it would also help increasing the efficiency of emission reduction targets and the evaluation of the sustainability dimension and its impacts of international trade. The results of the study have shown that there is an importance of distinction between the two emission allocation approaches, both from global and local level point of view.
Resumo:
Plantings of mixed native species (termed 'environmental plantings') are increasingly being established for carbon sequestration whilst providing additional environmental benefits such as biodiversity and water quality. In Australia, they are currently one of the most common forms of reforestation. Investment in establishing and maintaining such plantings relies on having a cost-effective modelling approach to providing unbiased estimates of biomass production and carbon sequestration rates. In Australia, the Full Carbon Accounting Model (FullCAM) is used for both national greenhouse gas accounting and project-scale sequestration activities. Prior to undertaking the work presented here, the FullCAM tree growth curve was not calibrated specifically for environmental plantings and generally under-estimated their biomass. Here we collected and analysed above-ground biomass data from 605 mixed-species environmental plantings, and tested the effects of several planting characteristics on growth rates. Plantings were then categorised based on significant differences in growth rates. Growth of plantings differed between temperate and tropical regions. Tropical plantings were relatively uniform in terms of planting methods and their growth was largely related to stand age, consistent with the un-calibrated growth curve. However, in temperate regions where plantings were more variable, key factors influencing growth were planting width, stand density and species-mix (proportion of individuals that were trees). These categories provided the basis for FullCAM calibration. Although the overall model efficiency was only 39-46%, there was nonetheless no significant bias when the model was applied to the various planting categories. Thus, modelled estimates of biomass accumulation will be reliable on average, but estimates at any particular location will be uncertain, with either under- or over-prediction possible. When compared with the un-calibrated yield curves, predictions using the new calibrations show that early growth is likely to be more rapid and total above-ground biomass may be higher for many plantings at maturity. This study has considerably improved understanding of the patterns of growth in different types of environmental plantings, and in modelling biomass accumulation in young (<25. years old) plantings. However, significant challenges remain to understand longer-term stand dynamics, particularly with temporal changes in stand density and species composition. © 2014.
Resumo:
Background: Managed forests are a major component of tropical landscapes. Production forests as designated by national forest services cover up to 400 million ha, i.e. half of the forested area in the humid tropics. Forest management thus plays a major role in the global carbon budget, but with a lack of unified method to estimate carbon fluxes from tropical managed forests. In this study we propose a new time- and spatially-explicit methodology to estimate the above-ground carbon budget of selective logging at regional scale. Results: The yearly balance of a logging unit, i.e. the elementary management unit of a forest estate, is modelled by aggregating three sub-models encompassing (i) emissions from extracted wood, (ii) emissions from logging damage and deforested areas and (iii) carbon storage from post-logging recovery. Models are parametrised and uncertainties are propagated through a MCMC algorithm. As a case study, we used 38 years of National Forest Inventories in French Guiana, northeastern Amazonia, to estimate the above-ground carbon balance (i.e. the net carbon exchange with the atmosphere) of selectively logged forests. Over this period, the net carbon balance of selective logging in the French Guianan Permanent Forest Estate is estimated to be comprised between 0.12 and 1.33 Tg C, with a median value of 0.64 Tg C. Uncertainties over the model could be diminished by improving the accuracy of both logging damage and large woody necromass decay submodels. Conclusions: We propose an innovating carbon accounting framework relying upon basic logging statistics. This flexible tool allows carbon budget of tropical managed forests to be estimated in a wide range of tropical regions
Resumo:
The international climate change regime has the potential to increase revenue available for forest restoration projects in Commonwealth nations. There are three mechanisms which could be used to fund forest projects aimed at forest conservation, forest restoration and sustainable forest management. The first forest funding opportunity arises under the clean development mechanism, a flexibility mechanism of the Kyoto Protocol. The clean development mechanism allows Annex I parties (industrialised nations) to invest in emission reduction activities in non-Annex 1 (developing countries) and the establishment of forest sinks is an eligible clean development mechanism activity. Secondly, parties to the Kyoto Protocol are able to include sustainable forest management activities in their national carbon accounting. The international rules concerning this are called the Land-Use, Land-Use Change and Forestry Guidelines. Thirdly, it is anticipated that at the upcoming Copenhagen negotiations that a Reduced Emissions from Deforestation and Degradation (REDD) instrument will be created. This will provide a direct funding mechanism for those developing countries with tropical forests. Payments made under a REDD arrangement will be based upon the developing country with tropical forest cover agreeing to protect and conserve a designated forest estate. These three funding options available under the international climate change regime demonstrate that there is potential for forest finance within the regime. These opportunities are however hindered by a number of technical and policy barriers which prevent the ability of the regime to significantly increase funding for forest projects. There are two types of carbon markets, compliance carbon markets (Kyoto based) and voluntary carbon markets. Voluntary carbon markets are more flexible then compliance markets and as such offer potential to increase revenue available for sustainable forest projects.
Resumo:
Inspired by the commercial desires of global brands and retailers to access the lucrative green consumer market, carbon is increasingly being counted and made knowable at the mundane sites of everyday production and consumption, from the carbon footprint of a plastic kitchen fork to that of an online bank account. Despite the challenges of counting and making commensurable the global warming impact of a myriad of biophysical and societal activities, this desire to communicate a product or service's carbon footprint has sparked complicated carbon calculative practices and enrolled actors at literally every node of multi-scaled and vastly complex global supply chains. Against this landscape, this paper critically analyzes the counting practices that create the ‘e’ in ‘CO2e’. It is shown that, central to these practices are a series of tools, models and databases which, in building upon previous work (Eden, 2012 and Star and Griesemer, 1989) we conceptualize here as ‘boundary objects’. By enrolling everyday actors from farmers to consumers, these objects abstract and stabilize greenhouse gas emissions from their messy material and social contexts into units of CO2e which can then be translated along a product's supply chain, thereby establishing a new currency of ‘everyday supply chain carbon’. However, in making all greenhouse gas-related practices commensurable and in enrolling and stabilizing the transfer of information between multiple actors these objects oversee a process of simplification reliant upon, and subject to, a multiplicity of approximations, assumptions, errors, discrepancies and/or omissions. Further the outcomes of these tools are subject to the politicized and commercial agendas of the worlds they attempt to link, with each boundary actor inscribing different meanings to a product's carbon footprint in accordance with their specific subjectivities, commercial desires and epistemic framings. It is therefore shown that how a boundary object transforms greenhouse gas emissions into units of CO2e, is the outcome of distinct ideologies regarding ‘what’ a product's carbon footprint is and how it should be made legible. These politicized decisions, in turn, inform specific reduction activities and ultimately advance distinct, specific and increasingly durable transition pathways to a low carbon society.
Resumo:
Agriculture's contribution to radiative forcing is principally through its historical release of carbon in soil and vegetation to the atmosphere and through its contemporary release of nitrous oxide (N2O) and methane (CHM4). The sequestration of soil carbon in soils now depleted in soil organic matter is a well-known strategy for mitigating the buildup of CO2 in the atmosphere. Less well-recognized are other mitigation potentials. A full-cost accounting of the effects of agriculture on greenhouse gas emissions is necessary to quantify the relative importance of all mitigation options. Such an analysis shows nitrogen fertilizer, agricultural liming, fuel use, N2O emissions, and CH4 fluxes to have additional significant potential for mitigation. By evaluating all sources in terms of their global warming potential it becomes possible to directly evaluate greenhouse policy options for agriculture. A comparison of temperate and tropical systems illustrates some of these options.
Resumo:
Since land use change can have significant impacts on regional biogeochemistry, we investigated how conversion of forest and cultivation to pasture impact soil C and N cycling. In addition to examining total soil C, we isolated soil physiochemical C fractions in order to understand the mechanisms by which soil C is sequestered or lost. Total soil C did not change significantly over time following conversion from forest, though coarse (250-2,000 mum) particulate organic matter C increased by a factor of 6 immediately after conversion. Aggregate mean weight diameter was reduced by about 50% after conversion, but values were like those under forest after 8 years under pasture. Samples collected from a long-term pasture that was converted from annual cultivation more than 50 years ago revealed that some soil physical properties negatively impacted by cultivation were very slow to recover. Finally, our results indicate that soil macroaggregates turn over more rapidly under pasture than under forest and are less efficient at stabilizing soil C, whereas microaggregates from pasture soils stabilize a larger concentration of C than forest microaggregates. Since conversion from forest to pasture has a minimal impact on total soil C content in the Piedmont region of Virginia, United States, a simple C stock accounting system could use the same base soil C stock value for either type of land use. However, since the effects of forest to pasture conversion are a function of grassland management following conversion, assessments of C sequestration rates require activity data on the extent of various grassland management practices.