1000 resultados para Capacidade de generalização
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação.
Resumo:
O objetivo do estudo foi comentar a possível existência de preconceito editorial entre editores de revistas científicas de países do Norte contra autores do Sul. Destacou-se que em estudo por métodos bibliométricos ficou evidenciada a existência de um importante desequilíbrio entre a produção científica de pesquisadores de países de alta renda ("Norte") e daqueles trabalhando em instituições de países de renda média ou baixa ("Sul"). Há uma percepção generalizada entre autores brasileiros de que, em parte, isso seria devido a preconceito de editores de revistas internacionais contra autores do Sul - 75% de uma amostra de 244 autores que responderam a inquérito acreditam que exista preconceito. Essa impressão é reforçada pela observação de uma minoria dos membros de conselhos editoriais das principais revistas na área de saúde proveniente do Sul. Embora o preconceito possa explicar parte do problema, há também questões especificas e remediáveis que podem aumentar a probabilidade de publicar no exterior. Essas incluem investir na qualidade do texto e da redação, e mostrar empatia com editores e leitores, sinalizando claramente a contribuição que o artigo pode trazer para a literatura internacional. Finalmente, é abordada a questão de onde publicar: em periódicos nacionais ou internacionais. Foram propostos seis tópicos que devem ser levados em conta nessa opção: idioma e público-alvo; tipo de contribuição ao conhecimento; capacidade de generalização; índice de citações; velocidade de publicação; e acesso livre. O aumento rápido de publicações brasileiras em periódicos internacionais mostra que o preconceito editorial, embora existente, pode ser efetivamente vencido por trabalhos com metodologia sólida e apresentação de qualidade.
Resumo:
Numa Estação de Tratamento de Águas Residuais (ETAR), a otimização do processo de Digestão Anaeróbia (DA) é fundamental para o aumento da produção de biogás, que por sua vez é convertido em energia, essencial para a rentabilidade de exploração de ETAR. No entanto, a complexidade do processo de Digestão Anaeróbia das lamas constitui um obstáculo à sua otimização. Com este trabalho pretende-se efetuar a análise e tratamento de dados de Digestão Anaeróbia, com recurso a Redes Neuronais Artificiais (RNA), contribuindo, desta forma, para a compreensão do processo e do impacto de algumas variáveis na produção de biogás. As Redes Neuronais Artificiais são modelos matemáticos computacionais inspirados no funcionamento do cérebro humano, com capacidade para entender relações complexas num determinado conjunto de dados, motivo por que se optou pela sua utilização na procura de soluções que permitem predizer o comportamento de uma DA. Para o desenvolvimento das RNA utilizou-se o programa NeuralToolsTM da PalisadeTM. Como caso de estudo, a metodologia foi aplicada ao Digestor A da ETAR Sul da SIMRIA, empresa onde teve lugar o estágio curricular que originou o presente trabalho. Nesse contexto, utilizaram-se dados com informação referente aos últimos dois anos de funcionamento do digestor, disponíveis na empresa. Apesar de se terem verificado certas limitações, na predição em alguns casos particulares, de um modo geral, considera-se que os resultados obtidos permitiram concluir que as redes neuronais modeladas apresentam boa capacidade de generalização na imitação do processo anaeróbio. Conclui-se, portanto, que o estudo realizado pode constituir um contributo com interesse para a otimização da produção do biogás na DA de ETAR Sul da SIMRIA e que a utilização de RNA poderá ser uma ferramenta a explorar, quer nessa área, quer noutras áreas de gestão de sistemas de saneamento básico.
Resumo:
Dissertação apresentada à Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia, para a obtenção do grau de Mestre em Energia e Bio-energia
Resumo:
Numa Estação de Tratamento de Águas Residuais (ETAR), são elevados os custos não só de tratamento das águas residuais como também de manutenção dos equipamentos lá existentes, nesse sentido procura-se utilizar processos capazes de transformar os resíduos em produtos úteis. A Digestão Anaeróbia (DA) é um processo atualmente disponível capaz de contribuir para a redução da poluição ambiental e ao mesmo tempo de valorizar os subprodutos gerados. Durante o processo de DA é produzido um gás, o biogás, que pode ser utilizado como fonte de energia, reduzindo assim a dependência energética da ETAR e a emissão de gases com efeito de estufa para a atmosfera. A otimização do processo de DA das lamas é essencial para o aumento da produção de biogás, mas a complexidade do processo constitui um obstáculo à sua otimização. Neste trabalho, aplicaram-se Redes Neuronais Artificiais (RNA) ao processo de DA de lamas de ETAR. RNA são modelos simplificados inspirados no funcionamento das células neuronais humanas e que adquirem conhecimento através da experiência. Quando a RNA é criada e treinada, produz valores de output aproximadamente corretos para os inputs fornecidos. Foi esse o motivo para recorrer a RNA na otimização da produção de biogás no digestor I da ETAR Norte da SIMRIA, usando o programa NeuralToolsTM da PalisadeTM para desenvolvimento das RNA. Para tal, efetuou-se uma análise e tratamento de dados referentes aos últimos quatro anos de funcionamento do digestor. Os resultados obtidos permitiram concluir que as RNA modeladas apresentam boa capacidade de generalização do processo de DA. Considera-se que este caso de estudo é promissor, fornecendo uma boa base para o desenvolvimento de modelos eventualmente mais gerais de RNA que, aplicado conjuntamente com as características de funcionamento de um digestor e o processo de DA, permitirá otimizar a produção de biogás em ETAR.
Resumo:
A Programação Genética (PG) é uma técnica de Aprendizagem de Máquina (Machine Learning (ML)) aplicada em problemas de otimização onde pretende-se achar a melhor solução num conjunto de possíveis soluções. A PG faz parte do paradigma conhecido por Computação Evolucionária (CE) que tem como inspiração à teoria da evolução natural das espécies para orientar a pesquisa das soluções. Neste trabalho, é avaliada a performance da PG no problema de previsão de parâmetros farmacocinéticos utilizados no processo de desenvolvimento de fármacos. Este é um problema de otimização onde, dado um conjunto de descritores moleculares de fármacos e os valores correspondentes dos parâmetros farmacocinéticos ou de sua atividade molecular, utiliza-se a PG para construir uma função matemática que estima tais valores. Para tal, foram utilizados dados de fármacos com os valores conhecidos de alguns parâmetros farmacocinéticos. Para avaliar o desempenho da PG na resolução do problema em questão, foram implementados diferentes modelos de PG com diferentes funções de fitness e configurações. Os resultados obtidos pelos diferentes modelos foram comparados com os resultados atualmente publicados na literatura e os mesmos confirmam que a PG é uma técnica promissora do ponto de vista da precisão das soluções encontradas, da capacidade de generalização e da correlação entre os valores previstos e os valores reais.
Resumo:
Dissertação de mestrado em Engenharia de Sistemas
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Eletrónica Médica)
Resumo:
In last decades, neural networks have been established as a major tool for the identification of nonlinear systems. Among the various types of networks used in identification, one that can be highlighted is the wavelet neural network (WNN). This network combines the characteristics of wavelet multiresolution theory with learning ability and generalization of neural networks usually, providing more accurate models than those ones obtained by traditional networks. An extension of WNN networks is to combine the neuro-fuzzy ANFIS (Adaptive Network Based Fuzzy Inference System) structure with wavelets, leading to generate the Fuzzy Wavelet Neural Network - FWNN structure. This network is very similar to ANFIS networks, with the difference that traditional polynomials present in consequent of this network are replaced by WNN networks. This paper proposes the identification of nonlinear dynamical systems from a network FWNN modified. In the proposed structure, functions only wavelets are used in the consequent. Thus, it is possible to obtain a simplification of the structure, reducing the number of adjustable parameters of the network. To evaluate the performance of network FWNN with this modification, an analysis of network performance is made, verifying advantages, disadvantages and cost effectiveness when compared to other existing FWNN structures in literature. The evaluations are carried out via the identification of two simulated systems traditionally found in the literature and a real nonlinear system, consisting of a nonlinear multi section tank. Finally, the network is used to infer values of temperature and humidity inside of a neonatal incubator. The execution of such analyzes is based on various criteria, like: mean squared error, number of training epochs, number of adjustable parameters, the variation of the mean square error, among others. The results found show the generalization ability of the modified structure, despite the simplification performed
Resumo:
This dissertation contributes for the development of methodologies through feed forward artificial neural networks for microwave and optical devices modeling. A bibliographical revision on the applications of neuro-computational techniques in the areas of microwave/optical engineering was carried through. Characteristics of networks MLP, RBF and SFNN, as well as the strategies of supervised learning had been presented. Adjustment expressions of the networks free parameters above cited had been deduced from the gradient method. Conventional method EM-ANN was applied in the modeling of microwave passive devices and optical amplifiers. For this, they had been proposals modular configurations based in networks SFNN and RBF/MLP objectifying a bigger capacity of models generalization. As for the training of the used networks, the Rprop algorithm was applied. All the algorithms used in the attainment of the models of this dissertation had been implemented in Matlab
Resumo:
Reinforcement learning is a machine learning technique that, although finding a large number of applications, maybe is yet to reach its full potential. One of the inadequately tested possibilities is the use of reinforcement learning in combination with other methods for the solution of pattern classification problems. It is well documented in the literature the problems that support vector machine ensembles face in terms of generalization capacity. Algorithms such as Adaboost do not deal appropriately with the imbalances that arise in those situations. Several alternatives have been proposed, with varying degrees of success. This dissertation presents a new approach to building committees of support vector machines. The presented algorithm combines Adaboost algorithm with a layer of reinforcement learning to adjust committee parameters in order to avoid that imbalances on the committee components affect the generalization performance of the final hypothesis. Comparisons were made with ensembles using and not using the reinforcement learning layer, testing benchmark data sets widely known in area of pattern classification
Resumo:
The pattern classification is one of the machine learning subareas that has the most outstanding. Among the various approaches to solve pattern classification problems, the Support Vector Machines (SVM) receive great emphasis, due to its ease of use and good generalization performance. The Least Squares formulation of SVM (LS-SVM) finds the solution by solving a set of linear equations instead of quadratic programming implemented in SVM. The LS-SVMs provide some free parameters that have to be correctly chosen to achieve satisfactory results in a given task. Despite the LS-SVMs having high performance, lots of tools have been developed to improve them, mainly the development of new classifying methods and the employment of ensembles, in other words, a combination of several classifiers. In this work, our proposal is to use an ensemble and a Genetic Algorithm (GA), search algorithm based on the evolution of species, to enhance the LSSVM classification. In the construction of this ensemble, we use a random selection of attributes of the original problem, which it splits the original problem into smaller ones where each classifier will act. So, we apply a genetic algorithm to find effective values of the LS-SVM parameters and also to find a weight vector, measuring the importance of each machine in the final classification. Finally, the final classification is obtained by a linear combination of the decision values of the LS-SVMs with the weight vector. We used several classification problems, taken as benchmarks to evaluate the performance of the algorithm and compared the results with other classifiers
Resumo:
The static and cyclic assays are common to test materials in structures.. For cycling assays to assess the fatigue behavior of the material and thereby obtain the S-N curves and these are used to construct the diagrams of living constant. However, these diagrams, when constructed with small amounts of S-N curves underestimate or overestimate the actual behavior of the composite, there is increasing need for more testing to obtain more accurate results. Therewith, , a way of reducing costs is the statistical analysis of the fatigue behavior. The aim of this research was evaluate the probabilistic fatigue behavior of composite materials. The research was conducted in three parts. The first part consists of associating the equation of probability Weilbull equations commonly used in modeling of composite materials S-N curve, namely the exponential equation and power law and their generalizations. The second part was used the results obtained by the equation which best represents the S-N curves of probability and trained a network to the modular 5% failure. In the third part, we carried out a comparative study of the results obtained using the nonlinear model by parts (PNL) with the results of a modular network architecture (MN) in the analysis of fatigue behavior. For this we used a database of ten materials obtained from the literature to assess the ability of generalization of the modular network as well as its robustness. From the results it was found that the power law of probability generalized probabilistic behavior better represents the fatigue and composites that although the generalization ability of the MN that was not robust training with 5% failure rate, but for values mean the MN showed more accurate results than the PNL model
Resumo:
Expanded Bed Adsorption (EBA) is an integrative process that combines concepts of chromatography and fluidization of solids. The many parameters involved and their synergistic effects complicate the optimization of the process. Fortunately, some mathematical tools have been developed in order to guide the investigation of the EBA system. In this work the application of experimental design, phenomenological modeling and artificial neural networks (ANN) in understanding chitosanases adsorption on ion exchange resin Streamline® DEAE have been investigated. The strain Paenibacillus ehimensis NRRL B-23118 was used for chitosanase production. EBA experiments were carried out using a column of 2.6 cm inner diameter with 30.0 cm in height that was coupled to a peristaltic pump. At the bottom of the column there was a distributor of glass beads having a height of 3.0 cm. Assays for residence time distribution (RTD) revelead a high degree of mixing, however, the Richardson-Zaki coefficients showed that the column was on the threshold of stability. Isotherm models fitted the adsorption equilibrium data in the presence of lyotropic salts. The results of experiment design indicated that the ionic strength and superficial velocity are important to the recovery and purity of chitosanases. The molecular mass of the two chitosanases were approximately 23 kDa and 52 kDa as estimated by SDS-PAGE. The phenomenological modeling was aimed to describe the operations in batch and column chromatography. The simulations were performed in Microsoft Visual Studio. The kinetic rate constant model set to kinetic curves efficiently under conditions of initial enzyme activity 0.232, 0.142 e 0.079 UA/mL. The simulated breakthrough curves showed some differences with experimental data, especially regarding the slope. Sensitivity tests of the model on the surface velocity, axial dispersion and initial concentration showed agreement with the literature. The neural network was constructed in MATLAB and Neural Network Toolbox. The cross-validation was used to improve the ability of generalization. The parameters of ANN were improved to obtain the settings 6-6 (enzyme activity) and 9-6 (total protein), as well as tansig transfer function and Levenberg-Marquardt training algorithm. The neural Carlos Eduardo de Araújo Padilha dezembro/2013 9 networks simulations, including all the steps of cycle, showed good agreement with experimental data, with a correlation coefficient of approximately 0.974. The effects of input variables on profiles of the stages of loading, washing and elution were consistent with the literature
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS