937 resultados para Cancer Research
Resumo:
Technology platforms originally developed for tissue engineering applications produce valuable models that mimic three-dimensional (3D) tissue organization and function to enhance the understanding of cell/tissue function under normal and pathological situations. These models show that when replicating physiological and pathological conditions as closely as possible investigators are allowed to probe the basic mechanisms of morphogenesis, differentiation and cancer. Significant efforts investigating angiogenetic processes and factors in tumorigenesis are currently undertaken to establish ways of targeting angiogenesis in tumours. Anti-angiogenic agents have been accepted for clinical application as attractive targeted therapeutics for the treatment of cancer. Combining the areas of tumour angiogenesis, combination therapies and drug delivery systems is therefore closely related to the understanding of the basic principles that are applied in tissue engineering models. Studies with 3D model systems have repeatedly identified complex interacting roles of matrix stiffness and composition, integrins, growth factor receptors and signalling in development and cancer. These insights suggest that plasticity, regulation and suppression of these processes can provide strategies and therapeutic targets for future cancer therapies. The historical perspective of the fields of tissue engineering and controlled release of therapeutics, including inhibitors of angiogenesis in tumours is becoming clearly evident as a major future advance in merging these fields. New delivery systems are expected to greatly enhance the ability to deliver drugs locally and in therapeutic concentrations to relevant sites in living organisms. Investigating the phenomena of angiogenesis and anti-angiogenesis in 3D in vivo models such as the Arterio-Venous (AV) loop mode in a separated and isolated chamber within a living organism adds another significant horizon to this perspective and opens new modalities for translational research in this field.
Resumo:
In a mini review from 2002, Tyler Jacks and Robert Weinberg commented on the pioneering three-dimensional (3D) culture work from Bissell laboratories and concluded: “Suddenly the study of cancer cells in two dimensions seems quaint if not archaic.” The relevance of this statement for planning and executing mechanistic biological studies and advanced drug testing has been largely disregarded by both academic researchers and the pharmaceutical and biomedical industry in the twenty-first century.
Resumo:
Cell proliferation is a critical and frequently studied feature of molecular biology in cancer research. Therefore, various assays are available using different strategies to measure cell proliferation. Metabolic assays such as AlamarBlue, WST-1, and MTT, which were originally developed to determine cell toxicity, are being used to assess cell numbers. Additionally, proliferative activity can be determined by quantification of DNA content using fluorophores, such as CyQuant and PicoGreen. Referring to data published in high ranking cancer journals, 945 publications applied these assays over the past 14 years to examine the proliferative behaviour of diverse cell types. Within this study, mainly metabolic assays were used to quantify changes in cell growth yet these assays may not accurately reflect cellular proliferation rates due to a miscorrelation of metabolic activity and cell number. Testing this hypothesis, we compared metabolic activity of different cell types, human cancer cells and primary cells, over a time period of 4 days using AlamarBlue and fluorometric assays CyQuant and PicoGreen to determine their DNA content. Our results show certain discrepancies in terms of over-estimation of cell proliferation with respect to the metabolic assay in comparison to DNA binding fluorophores.
Resumo:
Recreating an environment that supports and promotes fundamental homeostatic mechanisms is a significant challenge in tissue engineering. Optimizing cell survival, proliferation, differentiation, apoptosis and angiogenesis, and providing suitable stromal support and signalling cues are keys to successfully generating clinically useful tissues. Interestingly, those components are often subverted in the cancer setting, where aberrant angiogenesis, cellular proliferation, cell signalling and resistance to apoptosis drive malignant growth. In contrast to tissue engineering, identifying and inhibiting those pathways is a major challenge in cancer research. The recent discovery of adult tissue-specific stem cells has had a major impact on both tissue engineering and cancer research. The unique properties of these cells and their role in tissue and organ repair and regeneration hold great potential for engineering tissue-specific constructs. The emerging body of evidence implicating stem cells and progenitor cells as the source of oncogenic transformation prompts caution when using these cells for tissue-engineering purposes. While tissue engineering and cancer research may be considered as opposed fields of research with regard to their proclaimed goals, the compelling overlap in fundamental pathways underlying these processes suggests that cross-disciplinary research will benefit both fields. In this review article, tissue engineering and cancer research are brought together and explored with regard to discoveries that may be of mutual benefit.
Resumo:
Keuhkosyöpä on yleisimpiä syöpätauteja. Se jaetaan kahteen päätyyppiin: pienisoluiseen ja ei-pienisoluiseen keuhkosyöpään. Ei-pienisoluinen keuhkosyöpä jaetaan lisäksi alatyyppeihin, joista suurimmat ovat levyepiteeli-, adeno- ja suurisoluinen karsinooma. Keuhkosyövän tärkein riskitekijä on tupakointi, mutta muutkin työ- ja elinympäristön altisteet, kuten asbesti, voivat johtaa syöpään. Väitöstyössä tutkittiin kahdenlaisten keuhkosyöpäryhmien erityispiirteitä. Työssä kartoitettiin, onko löydettävissä muutoksia, jotka erottavat asbestikeuhkosyövät muista syövistä sekä luuytimeen varhaisessa vaiheessa leviävät keuhkosyövät leviämättömistä syövistä. Tutkimusten ensimmäisessä vaiheessa käytettiin mikrosirupohjaisia menetelmiä, jotka mahdollistavat jopa kaikkien geenien tarkastelun yhden kokeen avulla. Vertailevien mikrosirututkimusten avulla on mahdollista paikantaa geenejä tai kromosomialueita, joiden muutokset erottelevat ryhmät toisistaan. Asbestiin liittyvissä tutkimuksissa paikannettiin kuusi kromosomialuetta, joissa geenien kopiolukumäärän sekä ilmenemistason muutokset erottelivat potilaat altistushistorian mukaan. Riippumattomilla laboratoriomenetelmillä tehtyjen jatkoanalyysien avulla pystyttiin varmistamaan, että 19p-alueen häviämä oli yhteydessä asbestialtistukseen. Työssä osoitettiin myös, että 19p-alueen muutoksia voidaan indusoida altistamalla soluja asbestille in vitro. Tutkimuksessa saatiin lisäksi viitteitä asbestispesifisistä muutoksista signaalinvälitysreiteissä, sillä yhdessä toimivien geenien ilmentymisessä havaittiin eroja asbestille altistuneiden ja altistumattomien välillä. Vertailemalla luuytimeen syövän aikaisessa vaiheessa levinneiden ja leviämättömien keuhkoadenokarsinoomien muutosprofiileita toisiinsa, paikannettiin viisi aluetta, joilla geenien kopiolukumäärä- sekä ilmenemistason muutokset erottelivat ryhmät toisistaan. Jatkoanalyyseissä havaittiin, että 4q-alueen häviämää esiintyi adenokarsinoomien lisäksi levyepiteelikarsinoomiin, jotka olivat levinneet luuytimeen. Myös keuhkosyöpien aivometastaaseissa alue oli toistuvasti hävinnyt. Väitöstyön tutkimukset osoittavat, että vertailevien mikrosiruanalyysien avulla saadaan tietoa syöpäryhmien erityispiirteistä. Työssä saadut tulokset osoittavat, että 19p-alueen muutokset ovat tyypillisiä asbestikeuhkosyöville ja 4q-alueen muutokset luuytimeen aikaisessa vaiheessa leviäville keuhkosyöville.
Resumo:
Despite positive testing in animal studies, more than 80% of novel drug candidates fail to proof their efficacy when tested in humans. This is primarily due to the use of preclinical models that are not able to recapitulate the physiological or pathological processes in humans. Hence, one of the key challenges in the field of translational medicine is to “make the model organism mouse more human.” To get answers to questions that would be prognostic of outcomes in human medicine, the mouse's genome can be altered in order to create a more permissive host that allows the engraftment of human cell systems. It has been shown in the past that these strategies can improve our understanding of tumor immunology. However, the translational benefits of these platforms have still to be proven. In the 21st century, several research groups and consortia around the world take up the challenge to improve our understanding of how to humanize the animal's genetic code, its cells and, based on tissue engineering principles, its extracellular microenvironment, its tissues, or entire organs with the ultimate goal to foster the translation of new therapeutic strategies from bench to bedside. This article provides an overview of the state of the art of humanized models of tumor immunology and highlights future developments in the field such as the application of tissue engineering and regenerative medicine strategies to further enhance humanized murine model systems.
Resumo:
The existing clinical biomarkers for prostate cancer (PCa) are not ideal, since they cannot specifically differentiate between those patients who should be treated immediately and those who should avoid overtreatment. Current screening techniques lack specificity, and a decisive diagnosis of PCa is based on prostate biopsy. Although PCa screening is widely utilized nowadays, two-thirds of the biopsies performed are still unnecessary. Thus, the discovery of noninvasive PCa biomarkers remains an urgent unmet medical need. Once metastasized, there is still no curative therapy. A better understanding of sustained androgen receptor signalling in castration resistant prostate cancer (CRPC) has now led to the development of more effective therapies. We need a better understanding of the molecular and cellular aspects of prostate carcinogenesis and progression. Identification of cancer initiating cells and therapies against these populations is a promising way forward to fight this disease.
Resumo:
回顾了辐射致癌方面的研究进展和二次原发性肿瘤在放射医学领域中的提出和发展,总结了辐射致癌的一般特征以及主要医用放射性装置对二次原发性肿瘤发病的影响。重点阐述了年龄、性别、组织敏感性和照射剂量等重要影响因素在二次原发性肿瘤发病上造成的差异和原因。讨论了部分潜在的影响因素。展望了二次原发性肿瘤方面研究的前景和在放射治疗领域中的重要意义。
Resumo:
BACKGROUND: In 1999, 270,000 cases of cancer were registered in the United Kingdom, placing a large burden on the NHS. Cancer outcome data in 1999 suggested that UK survival rates were poorer than most other European countries. In the same year, a Department of Health review noted that clinical trials accrual was poor (
Resumo:
BACKGROUND: The aim of this study was to evaluate the efficacy and tolerability of fulvestrant, an estrogen receptor antagonist, in postmenopausal women with hormone-responsive tumors progressing after aromatase inhibitor (AI) treatment. PATIENTS AND METHODS: This is a phase II, open, multicenter, noncomparative study. Two patient groups were prospectively considered: group A (n=70) with AI-responsive disease and group B (n=20) with AI-resistant disease. Fulvestrant 250 mg was administered as intramuscular injection every 28 (+/-3) days. RESULTS: All patients were pretreated with AI and 84% also with tamoxifen or toremifene; 67% had bone metastases and 45% liver metastases. Fulvestrant administration was well tolerated and yielded a clinical benefit (CB; defined as objective response or stable disease [SD] for >or=24 weeks) in 28% (90% confidence interval [CI] 19% to 39%) of patients in group A and 37% (90% CI 19% to 58%) of patients in group B. Median time to progression (TTP) was 3.6 (95% CI 3.0 to 4.8) months in group A and 3.4 (95% CI 2.5 to 6.7) months in group B. CONCLUSIONS: Overall, 30% of patients who had progressed following prior AI treatment gained CB with fulvestrant, thereby delaying indication to start chemotherapy. Prior response to an AI did not appear to be predictive for benefit with fulvestrant.
Resumo:
Abstract Background The implication of post-transcriptional regulation by microRNAs in molecular mechanisms underlying cancer disease is well documented. However, their interference at the cellular level is not fully explored. Functional in vitro studies are fundamental for the comprehension of their role; nevertheless results are highly dependable on the adopted cellular model. Next generation small RNA transcriptomic sequencing data of a tumor cell line and keratinocytes derived from primary culture was generated in order to characterize the microRNA content of these systems, thus helping in their understanding. Both constitute cell models for functional studies of microRNAs in head and neck squamous cell carcinoma (HNSCC), a smoking-related cancer. Known microRNAs were quantified and analyzed in the context of gene regulation. New microRNAs were investigated using similarity and structural search, ab initio classification, and prediction of the location of mature microRNAs within would-be precursor sequences. Results were compared with small RNA transcriptomic sequences from HNSCC samples in order to access the applicability of these cell models for cancer phenotype comprehension and for novel molecule discovery. Results Ten miRNAs represented over 70% of the mature molecules present in each of the cell types. The most expressed molecules were miR-21, miR-24 and miR-205, Accordingly; miR-21 and miR-205 have been previously shown to play a role in epithelial cell biology. Although miR-21 has been implicated in cancer development, and evaluated as a biomarker in HNSCC progression, no significant expression differences were seen between cell types. We demonstrate that differentially expressed mature miRNAs target cell differentiation and apoptosis related biological processes, indicating that they might represent, with acceptable accuracy, the genetic context from which they derive. Most miRNAs identified in the cancer cell line and in keratinocytes were present in tumor samples and cancer-free samples, respectively, with miR-21, miR-24 and miR-205 still among the most prevalent molecules at all instances. Thirteen miRNA-like structures, containing reads identified by the deep sequencing, were predicted from putative miRNA precursor sequences. Strong evidences suggest that one of them could be a new miRNA. This molecule was mostly expressed in the tumor cell line and HNSCC samples indicating a possible biological function in cancer. Conclusions Critical biological features of cells must be fully understood before they can be chosen as models for functional studies. Expression levels of miRNAs relate to cell type and tissue context. This study provides insights on miRNA content of two cell models used for cancer research. Pathways commonly deregulated in HNSCC might be targeted by most expressed and also by differentially expressed miRNAs. Results indicate that the use of cell models for cancer research demands careful assessment of underlying molecular characteristics for proper data interpretation. Additionally, one new miRNA-like molecule with a potential role in cancer was identified in the cell lines and clinical samples.
Resumo:
There is no standard treatment for patients with locally advanced esophageal carcinoma without systemic metastasis in whom surgery is no longer considered a reasonable option.
Resumo:
Sunitinib (SU) is a multitargeted tyrosine kinase inhibitor with antitumor and antiangiogenic activity. The objective of this trial was to demonstrate antitumor activity of continuous SU treatment in patients with hepatocellular carcinoma (HCC).