960 resultados para Calibration errors


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper discusses five strategies to deal with five types of errors in Qualitative Comparative Analysis (QCA): condition errors, systematic errors, random errors, calibration errors, and deviant case errors. These strategies are the comparative inspection of complex, intermediary, and parsimonious solutions; the use of an adjustment factor, the use of probabilistic criteria, the test of the robustness of calibration parameters, and the use of a frequency threshold for observed combinations of conditions. The strategies are systematically reviewed, assessed, and evaluated as regards their applicability, advantages, limitations, and complementarities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

X-ray fluorescence (XRF) is a fast, low-cost, nondestructive, and truly multielement analytical technique. The objectives of this study are to quantify the amount of Na(+) and K(+) in samples of table salt (refined, marine, and light) and to compare three different methodologies of quantification using XRF. A fundamental parameter method revealed difficulties in quantifying accurately lighter elements (Z < 22). A univariate methodology based on peak area calibration is an attractive alternative, even though additional steps of data manipulation might consume some time. Quantifications were performed with good correlations for both Na (r = 0.974) and K (r = 0.992). A partial least-squares (PLS) regression method with five latent variables was very fast. Na(+) quantifications provided calibration errors lower than 16% and a correlation of 0.995. Of great concern was the observation of high Na(+) levels in low-sodium salts. The presented application may be performed in a fast and multielement fashion, in accordance with Green Chemistry specifications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Any transportation infrastructure system is inherently concerned with durability and performance issues. The proportioning and uniformity control of concrete mixtures are critical factors that directly affect the longevity and performance of the portland cement concrete pavement systems. At present, the only means available to monitor mix proportions of any given batch are to track batch tickets created at the batch plant. However, this does not take into account potential errors in loading materials into storage silos, calibration errors, and addition of water after dispatch. Therefore, there is a need for a rapid, cost-effective, and reliable field test that estimates the proportions of as-delivered concrete mixtures. In addition, performance based specifications will be more easily implemented if there is a way to readily demonstrate whether any given batch is similar to the proportions already accepted based on laboratory performance testing. The goal of the present research project is to investigate the potential use of a portable x-ray fluorescence (XRF) technique to assess the proportions of concrete mixtures as they are delivered. Tests were conducted on the raw materials, paste and mortar samples using a portable XRF device. There is a reasonable correlation between the actual and calculated mix proportions of the paste samples, but data on mortar samples was less reliable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work presents a set of intelligent algorithms with the purpose of correcting calibration errors in sensors and reducting the periodicity of their calibrations. Such algorithms were designed using Artificial Neural Networks due to its great capacity of learning, adaptation and function approximation. Two approaches willbe shown, the firstone uses Multilayer Perceptron Networks to approximate the many shapes of the calibration curve of a sensor which discalibrates in different time points. This approach requires the knowledge of the sensor s functioning time, but this information is not always available. To overcome this need, another approach using Recurrent Neural Networks was proposed. The Recurrent Neural Networks have a great capacity of learning the dynamics of a system to which it was trained, so they can learn the dynamics of a sensor s discalibration. Knowingthe sensor s functioning time or its discalibration dynamics, it is possible to determine how much a sensor is discalibrated and correct its measured value, providing then, a more exact measurement. The algorithms proposed in this work can be implemented in a Foundation Fieldbus industrial network environment, which has a good capacity of device programming through its function blocks, making it possible to have them applied to the measurement process

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to evaluate the evolution of calibration and maintenance practices for crop sprayers on soybean production areas in Brazil, in the 2006 and 2007 seasons, based on the Project IPP data. Therefore, the evaluation covered issues related to calibration, maintenance condition and the main components of 103 sprayers distributed in the following states: Rio Grande do Sul (35), Paraná (60), and, Mato Grosso do Sul (8). The evaluations were done at the rate of one sprayer per farm. The most frequent problems were related to the pressure gauge, spray leaks and calibration errors greater than 50% of the desired volume rate. The analysis of the application rate showed a tendency for the farmers to apply volume rates below the desired value. In 2006 the errors of the application rate were significant, with 70.4% for Rio Grande do Sul State, 74.5% for Paraná State and 37.5% for Mato Grosso do Sul State. In 2007 there was a reduction of errors, with averages of 50.0% for Rio Grande do Sul and 66.7% for Paraná. In general terms, the results showed improvements on the use, maintenance and calibration processes for crop sprayers on the areas covered by the Project IPP, with reductions on average indexes for calibration errors, leaks and bad tips, among other issues.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis deals with Visual Servoing and its strictly connected disciplines like projective geometry, image processing, robotics and non-linear control. More specifically the work addresses the problem to control a robotic manipulator through one of the largely used Visual Servoing techniques: the Image Based Visual Servoing (IBVS). In Image Based Visual Servoing the robot is driven by on-line performing a feedback control loop that is closed directly in the 2D space of the camera sensor. The work considers the case of a monocular system with the only camera mounted on the robot end effector (eye in hand configuration). Through IBVS the system can be positioned with respect to a 3D fixed target by minimizing the differences between its initial view and its goal view, corresponding respectively to the initial and the goal system configurations: the robot Cartesian Motion is thus generated only by means of visual informations. However, the execution of a positioning control task by IBVS is not straightforward because singularity problems may occur and local minima may be reached where the reached image is very close to the target one but the 3D positioning task is far from being fulfilled: this happens in particular for large camera displacements, when the the initial and the goal target views are noticeably different. To overcame singularity and local minima drawbacks, maintaining the good properties of IBVS robustness with respect to modeling and camera calibration errors, an opportune image path planning can be exploited. This work deals with the problem of generating opportune image plane trajectories for tracked points of the servoing control scheme (a trajectory is made of a path plus a time law). The generated image plane paths must be feasible i.e. they must be compliant with rigid body motion of the camera with respect to the object so as to avoid image jacobian singularities and local minima problems. In addition, the image planned trajectories must generate camera velocity screws which are smooth and within the allowed bounds of the robot. We will show that a scaled 3D motion planning algorithm can be devised in order to generate feasible image plane trajectories. Since the paths in the image are off-line generated it is also possible to tune the planning parameters so as to maintain the target inside the camera field of view even if, in some unfortunate cases, the feature target points would leave the camera images due to 3D robot motions. To test the validity of the proposed approach some both experiments and simulations results have been reported taking also into account the influence of noise in the path planning strategy. The experiments have been realized with a 6DOF anthropomorphic manipulator with a fire-wire camera installed on its end effector: the results demonstrate the good performances and the feasibility of the proposed approach.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

3D video-fluoroscopy is an accurate but cumbersome technique to estimate natural or prosthetic human joint kinematics. This dissertation proposes innovative methodologies to improve the 3D fluoroscopic analysis reliability and usability. Being based on direct radiographic imaging of the joint, and avoiding soft tissue artefact that limits the accuracy of skin marker based techniques, the fluoroscopic analysis has a potential accuracy of the order of mm/deg or better. It can provide fundamental informations for clinical and methodological applications, but, notwithstanding the number of methodological protocols proposed in the literature, time consuming user interaction is exploited to obtain consistent results. The user-dependency prevented a reliable quantification of the actual accuracy and precision of the methods, and, consequently, slowed down the translation to the clinical practice. The objective of the present work was to speed up this process introducing methodological improvements in the analysis. In the thesis, the fluoroscopic analysis was characterized in depth, in order to evaluate its pros and cons, and to provide reliable solutions to overcome its limitations. To this aim, an analytical approach was followed. The major sources of error were isolated with in-silico preliminary studies as: (a) geometric distortion and calibration errors, (b) 2D images and 3D models resolutions, (c) incorrect contour extraction, (d) bone model symmetries, (e) optimization algorithm limitations, (f) user errors. The effect of each criticality was quantified, and verified with an in-vivo preliminary study on the elbow joint. The dominant source of error was identified in the limited extent of the convergence domain for the local optimization algorithms, which forced the user to manually specify the starting pose for the estimating process. To solve this problem, two different approaches were followed: to increase the optimal pose convergence basin, the local approach used sequential alignments of the 6 degrees of freedom in order of sensitivity, or a geometrical feature-based estimation of the initial conditions for the optimization; the global approach used an unsupervised memetic algorithm to optimally explore the search domain. The performances of the technique were evaluated with a series of in-silico studies and validated in-vitro with a phantom based comparison with a radiostereometric gold-standard. The accuracy of the method is joint-dependent, and for the intact knee joint, the new unsupervised algorithm guaranteed a maximum error lower than 0.5 mm for in-plane translations, 10 mm for out-of-plane translation, and of 3 deg for rotations in a mono-planar setup; and lower than 0.5 mm for translations and 1 deg for rotations in a bi-planar setups. The bi-planar setup is best suited when accurate results are needed, such as for methodological research studies. The mono-planar analysis may be enough for clinical application when the analysis time and cost may be an issue. A further reduction of the user interaction was obtained for prosthetic joints kinematics. A mixed region-growing and level-set segmentation method was proposed and halved the analysis time, delegating the computational burden to the machine. In-silico and in-vivo studies demonstrated that the reliability of the new semiautomatic method was comparable to a user defined manual gold-standard. The improved fluoroscopic analysis was finally applied to a first in-vivo methodological study on the foot kinematics. Preliminary evaluations showed that the presented methodology represents a feasible gold-standard for the validation of skin marker based foot kinematics protocols.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Kalorimetrische Tieftemperatur-Detektoren (Calorimetric Low Temperature Detectors, CLTDs) wurden erstmals in Messungen zur Bestimmung des spezifischen Energieverlustes (dE/dx) niederenergetischer Schwerionen beim Durchgang durch Materie eingesetzt. Die Messungen wurden im Energiebereich unterhalb des Bragg-Peaks, mit 0.1 - 1.4 MeV/u 238U-Ionen in Kohlenstoff und Gold sowie mit 0.05 - 1.0 MeV/u 131Xe-Ionen in Kohlenstoff, Nickel und Gold, durchgeführt. Die Kombination der CLTDs mit einem Flugzeitdetektor ermöglichte dabei, kontinuierliche dE/dx-Kurven über größere Energiebereiche hinweg simultan zu bestimmen. Im Vergleich zu herkömmlichen Meßsystemen, die Ionisationsdetektoren zur Energiemessung verwenden, erlaubten die höhere Energieauflösung und -linearität der CLTDs eine Verringerung der Kalibrierungsfehler sowie eine Erweiterung des zugänglichen Energiebereiches der dE/dx-Messungen in Richtung niedriger Energien. Die gewonnen Daten können zur Anpassung theoretischer und semi-empirischer Modelle und somit zu einer Erhöhung der Präzision bei der Vorhersage spezifischer Energieverluste schwerer Ionen beitragen. Neben der experimentellen Bestimmung neuer Daten wurden das alternative Detektionsprinzip der CLTDs, die Vorteile dieser Detektoren bezüglich Energieauflösung und -linearität sowie der modulare Aufbau des CLTD-Arrays aus mehreren Einzeldetektoren genutzt, um diese Art von Messung auf potentielle systematische Unsicherheiten zu untersuchen. Unter anderem wurden hierbei unerwartete Channeling-Effekte beim Durchgang der Ionen durch dünne polykristalline Absorberfolien beobachtet. Die koinzidenten Energie- und Flugzeitmessungen (E-ToF) wurden weiterhin genutzt, um das Auflösungsvermögen des Detektor-Systems bei der direkten in-flight Massenbestimmung langsamer und sehr schwerer Ionen zu bestimmen. Durch die exzellente Energieauflösung der CLTDs konnten hierbei Massenauflösungen von Delta-m(FWHM) = 1.3 - 2.5 u für 0.1 - 0.6 MeV/u 238U-Ionen erreicht werden. In einer E-ToF-Messung mit Ionisationsdetektoren sind solche Werte in diesem Energie- und Massenbereich aufgrund der Limitierung der Energieauflösung durch statistische Schwankungen von Verlustprozessen beim Teilchennachweis nicht erreichbar.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Anomalously high values of Ir have been detected in association with the Cretaceous/Tertiary boundary in about a dozen marine or continental sections laid down about 65 Ma in many different parts of the world (Alvarez et al., 1981). One possible exception is the Cretaceous/Tertiary boundary region in DSDP Site 356, in the South Atlantic off the coast of South America. In a detailed study of that section, the maximum Ir abundance was about 0.2 ppb, much lower than the 3-90 ppb found in most of the other marine locations (authors' unpublished data on the Cretaceous/Tertiary region of Site 356, 1982). A study of Hole 516F, which is not too far from Site 356, could show whether the very low (or missing) Cretaceous/Tertiary Ir anomaly at Site 356 is characteristic of this region of the South Atlantic.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In Robot-Assisted Rehabilitation (RAR) the accurate estimation of the patient limb joint angles is critical for assessing therapy efficacy. In RAR, the use of classic motion capture systems (MOCAPs) (e.g., optical and electromagnetic) to estimate the Glenohumeral (GH) joint angles is hindered by the exoskeleton body, which causes occlusions and magnetic disturbances. Moreover, the exoskeleton posture does not accurately reflect limb posture, as their kinematic models differ. To address the said limitations in posture estimation, we propose installing the cameras of an optical marker-based MOCAP in the rehabilitation exoskeleton. Then, the GH joint angles are estimated by combining the estimated marker poses and exoskeleton Forward Kinematics. Such hybrid system prevents problems related to marker occlusions, reduced camera detection volume, and imprecise joint angle estimation due to the kinematic mismatch of the patient and exoskeleton models. This paper presents the formulation, simulation, and accuracy quantification of the proposed method with simulated human movements. In addition, a sensitivity analysis of the method accuracy to marker position estimation errors, due to system calibration errors and marker drifts, has been carried out. The results show that, even with significant errors in the marker position estimation, method accuracy is adequate for RAR.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Insights from the stream of research on knowledge calibration, which refers to the correspondence between accuracy and confidence in knowledge, enable a better understanding of consequences of inaccurate perceptions of managers. This paper examines the consequences of inaccurate managerial knowledge through the lens of knowledge calibration. Specifically, the paper examines the antecedent role of miscalibration of knowledge in strategy formation. It is postulated that miscalibrated managers who overestimate external factors and display a high level of confidence in their estimates are likely to enact strategies that are relatively more evolutionary and incremental in nature, whereas miscalibrated managers who overestimate internal factors and display a high level of confidence in their estimates are likely to enact strategies that are relatively more discontinuous and disruptive in nature. Perspectives from social cognitive theory provide support for the underlying processes. The paper, in part, explains the paradox of the prevalence of inaccurate managerial perceptions and efficacious performance. It also advances the literature on strategy formation through the application of the construct of knowledge calibration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents an automated system for the measurement of form errors of mechanical components using an industrial robot. A three-probe error separation technique was employed to allow decoupling between the measured form error and errors introduced by the robotic system. A mathematical model of the measuring system was developed to provide inspection results by means of the solution of a system of linear equations. A new self-calibration procedure, which employs redundant data from several runs, minimizes the influence of probes zero-adjustment on the final result. Experimental tests applied to the measurement of straightness errors of mechanical components were accomplished and demonstrated the effectiveness of the employed methodology. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The knowledge of soil water storage (SWS) of soil profiles is crucial for the adoption of vegetation restoration practices. With the aim of identifying representative sites to obtain the mean SWS of a watershed, a time stability analysis of neutron probe evaluations of SWS was performed by the means of relative differences and Spearman rank correlation coefficients. At the same time, the effects of different neutron probe calibration procedures were explored on time stability analysis. mean SWS estimation. and preservation of the spatial variability of SWS. The selected watershed, with deep gullies and undulating slopes which cover an area of 20 ha, is characterized by an Ust-Sandiic Entisol and an Aeolian sandy soil. The dominant vegetation species are bunge needlegrass (Stipa bungeana Trim) and korshinsk peashrub (Carugano Korshinskii kom.). From June 11, 2007 to July 23,2008, SWS of the top1 m soil layer was evaluated for 20 dates, based on neutron probe data of 12 sampling sites. Three calibration procedures were employed: type 1, most complete, with each site having its own linear calibration equation (TrE); type II. with TrE equations extended over the whole field: and type III, with one single linear calibration curve for the whole field (UnE) and also correcting its intercept based on site specific relative difference analysis (RdE) and on linear fitting of data (RcE), both maintaining the same slope. A strong time stability of SWS estimated by TrE equations was identified. Soil particle size and soil organic matter content were recognized as the influencing factors for spatial variability of SWS. Land use influenced neither the spatial variability nor the time stability of SWS. Time stability analysis identified one site to represent the mean SWS of the whole watershed with mean absolute percentage errors of less than 10%, therefore. this site can be used as a predictor for the mean SWS of the watershed. Some equations of type II were found to be unsatisfactory to yield reliable mean SWS values or in preserving the associated soil spatial variability. Hence, it is recommended to be cautious in extending calibration equations to other sites since they might not consider the field variability. For the equations with corrected intercept (type III), which consider the spatial variability of calibration in a different way in relation to TrE, it was found that they can yield satisfactory means and standard deviation of SWS, except for the RdE equations, which largely leveled off the SWS values in the watershed. Correlation analysis showed that the neutron probe calibration was linked to soil bulk density and to organic matter content. Therefore, spatial variability of soil properties should be taken into account during the process of neutron probe calibration. This study provides useful information on the mean SWS observation with a time stable site and on distinct neutron probe calibration procedures, and it should be extended to soil water management studies with neutron probes, e.g., the process of vegetation restoration in wider area and soil types of the Loess Plateau in China. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Esta dissertação descreve o desenvolvimento e avaliação de um procedimento de \Numerical Site Calibration" (NSC) para um Parque Eólico, situado a sul de Portugal, usando Dinâmica de Fluídos Computacional (CFD). O NSC encontra-se baseado no \Site Calibration" (SC), sendo este um método de medição padronizado pela Comissão Electrónica Internacional através da norma IEC 61400. Este método tem a finalidade de quantificar e reduzir os efeitos provocados pelo terreno e por possíveis obstáculos, na medição do desempenho energético das turbinas eólicas. Assim, no SC são realizadas medições em dois pontos, no mastro referência e no local da turbina (mastro temporário). No entanto, em Parques Eólicos já construídos, este método não é aplicável visto ser necessária a instalação de um mastro de medição no local da turbina e, por conseguinte, o procedimento adequado para estas circunstâncias é o NSC. O desenvolvimento deste método é feito por um código CFD, desenvolvido por uma equipa de investigação do Instituto Superior de Engenharia do Porto, designado de WINDIETM, usado extensivamente pela empresa Megajoule Inovação, Lda em aplicações de energia eólica em todo mundo. Este código é uma ferramenta para simulação de escoamentos tridimensionais em terrenos complexos. As simulações do escoamento são realizadas no regime transiente utilizando as equações de Navier-Stokes médias de Reynolds com aproximação de Bussinesq e o modelo de turbulência TKE 1.5. As condições fronteira são provenientes dos resultados de uma simulação realizada com Weather Research and Forecasting, WRF. Estas simulações dividem-se em dois grupos, um dos conjuntos de simulações utiliza o esquema convectivo Upwind e o outro utiliza o esquema convectivo de 4aordem. A análise deste método é realizada a partir da comparação dos dados obtidos nas simulações realizadas no código WINDIETM e a coleta de dados medidos durante o processo SC. Em suma, conclui-se que o WINDIETM e as suas configurações reproduzem bons resultados de calibração, ja que produzem erros globais na ordem de dois pontos percentuais em relação ao SC realizado para o mesmo local em estudo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The process of visually exploring underwater environments is still a complex problem. Underwater vision systems require complementary means of sensor information to help overcome water disturbances. This work proposes the development of calibration methods for a structured light based system consisting on a camera and a laser with a line beam. Two different calibration procedures that require only two images from different viewpoints were developed and tested in dry and underwater environments. Results obtained show, an accurate calibration for the camera/projector pair with errors close to 1 mm even in the presence of a small stereos baseline.