998 resultados para Caldeiras a vapor


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The use of heat in parallel with relative low temperatures and applied to several areas of the industry is essential for the main manufacturing processes, like drying, dehydrating, concentration, annealing, production of chemical reactions, and microbiological sterilization. Without neither the heat nor the coming of a great quantity of thermal heat, with high quality, there would not be the “modern society”, with its high standards of living plus its high consumption levels; from services to goods in general. Within an almost absolute way, the heat flows are obtained from vapor systems. Thus, in this work we are going into the operation of a vapor system, composed of two firetube boilers dimensioned to supply vapor for three processes. However, with the transfer of one of the processes to another plant, the system got over-dimensioned. But, taking advantage of this scenario, the two boilers were used to supply vapor to further processes, causing their intermittent usage. Moreover, the operational alternative adopted by the maintenance engineering of the plant for a creating a solution has been presented; both the positive points and negative ones were disclosed, likewise the possibility of improvement points

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In recent years, increasing demand for energy has led to studies to increase the amount of electricity produced. Due to this fact, more and more boilers are becoming important sources of electricity generation. To raise the efficiency of energy generated in the boilers is necessary to raise the steam pressure and temperature to values previously unimaginable. The use of more resistant materials and maintenance practices and most appropriate operation made it possible. The objective of this study is to test the main types of failure in a chemical recovery boiler, in particular due to fatigue in the superheater, because it is a component subjected to high temperatures and thus more subject to different failures. In this manner this study aims to reduce the incidence of unscheduled maintenance shutdowns, increasing the operation time under appropriate conditions. Modeling performed in this study, the failure did not occur, because we considered only the mechanical stress. Under normal conditions, mechanical stress in combination with thermal stresses can cause cracks in the tubes due to cyclical stresses, leading to fatigue failure

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The steady increase in the price of oil and its derivatives, carbon credits, the concern with the environment combined with the precipitation of rain water and lack of water resources that Brazil has suffered in 2014 caused a migration of participation sources of energy in the Brazilian energy matrix. The hydropower sector suffered big drop at 2013 and is suffering so far, contributing thus to the generation and cogeneration of thermal energy using renewable energy sources such as: sugarcane bagasse, wood chips, rice husks, among others. The selling price of the electricity market reached the level of R$ 807, 00 MWh in January 2014 (Source: ANEEL), heating the Brazilian thermoelectric sector. Although thermoelectric use in bulk water as vaporizing fluid to produce electricity and use in various processes, water reuse plans have become an important factor in these industries. The increased use of biomass has been the bagasse which is allied to the sugarcane sector, strong market in Brazil, and consists basically use the rest of sugar cane, sugarcane industries that would play out. The sugar and ethanol industry is very unstable and only lasts for 6-8 months a year, and the remaining time in the period known as between crop that corresponds to the planting and harvesting of sugarcane and then enter the period of vintage which is the constant cane harvesting and crushing it. This instability of the market and the thermoelectric idle period leads the thermoelectric industries to seek other sources of renewable energy, such as wood chips (pine, Eucalyptus, Orange), rice husk, sorghum among others, to not be dependent on alcohol sector. The present work aims to study the use of wood chips as an alternative biomass for burning a fuel that essentially uses bagasse, the thermoelectric in question consists of two boilers that produce together 350 t / h ... (Complete Abstract click electronic access below)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Within the concepts of sustainability, energy audit magnified its importance in managing systems in industrial plants. Can reduce waste and save energy representative, the improvement and development of thermal and electrical systems can be very attractive to business. With the focus on a boiler generating steam, the energy audit aimed to increase efficiency and eliminate energy losses of the heat engine. The boiler in question is commonly called CO boiler because most of the calorific power provided comes from this. Using a fuel gas from the catalyst regeneration process, it has featured in the boiler power generation system of the refinery. Burning a mixture of gaseous components from discarded into the atmosphere, the heat engine can generate tons of steam just as the other boilers installed. The challenge was to work with this gas mixture and obtain maximum efficiency, reduce moisture and enjoy the warmth of the heat exchange have been studied and recommended. Every project, from evaluation of the variables in the composition of fuel gas, to the using of heat exchangers and refrigeration system are suitable for evaluation and improvements

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Steam generation plants have several industrial applications, being important for the national and global energetic matrix. Operational knowledge of steam plants is extremely important to forming a Mechanical Engineer. The facilities from Faculty of Engineering of Guaratingueta have a no operated steam pilot plant, named Thermal Machine Lab. Nowadays, the Energy Department from the faculty cannot explore this lab for its classes, even being essential to consolidate the theoretical concepts with tests simulating industrial applications. The goal of this project was to restore the operational condition of equipment of steam laboratory by fixing the equipment, and creating operational scripts for them. In a close future this lab could be used for classes, research and other applications

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Em 2006, a IEA (Agência Internacional de Energia), publicou alguns estudos de consumos mundiais de energia. Naquela altura, apontava na fabricação de produtos, um consumo mundial de energia elétrica, de origem fóssil de cerca 86,16 EJ/ano (86,16×018 J) e um consumo de energia nos sistemas de vapor de 32,75 EJ/ano. Evidenciou também nesses estudos que o potencial de poupança de energia nos sistemas de vapor era de 3,27 EJ/ano. Ou seja, quase tanto como a energia consumida nos sistemas de vapor da U.E. Não se encontraram números relativamente a Portugal, mas comparativamente com outros Países publicitados com alguma similaridade, o consumo de energia em vapor rondará 0,2 EJ/ano e por conseguinte um potencial de poupança de cerca 0,02 EJ/ano, ou 5,6 × 106 MWh/ano ou uma potência de 646 MW, mais do que a potência de cinco barragens Crestuma/Lever! Trata-se efetivamente de muita energia; interessa por isso perceber o onde e o porquê deste desperdício. De um modo muito modesto, pretende-se com este trabalho dar algum contributo neste sentido. Procurou-se evidenciar as possibilidades reais de os utilizadores de vapor de água na indústria reduzirem os consumos de energia associados à sua produção. Não estão em causa as diferentes formas de energia para a geração de vapor, sejam de origem fóssil ou renovável; interessou neste trabalho estudar o modo de como é manuseado o vapor na sua função de transporte de energia térmica, e de como este poderá ser melhorado na sua eficiência de cedência de calor, idealmente com menor consumo de energia. Com efeito, de que servirá se se optou por substituir o tipo de queima para uma mais sustentável se a jusante se continuarem a verificarem desperdícios, descarga exagerada nas purgas das caldeiras com perda de calor associada, emissões permanentes de vapor para a atmosfera em tanques de condensado, perdas por válvulas nos vedantes, purgadores avariados abertos, pressão de vapor exageradamente alta atendendo às temperaturas necessárias, “layouts” do sistema de distribuição mal desenhados, inexistência de registos de produção e consumos de vapor, etc. A base de organização deste estudo foi o ciclo de vapor: produção, distribuição, consumo e recuperação de condensado. Pareceu importante incluir também o tratamento de água, atendendo às implicações na transferência de calor das superfícies com incrustações. Na produção de vapor, verifica-se que os maiores problemas de perda de energia têm a ver com a falta de controlo, no excesso de ar e purgas das caldeiras em exagero. Na distribuição de vapor aborda-se o dimensionamento das tubagens, necessidade de purgas a v montante das válvulas de controlo, a redução de pressão com válvulas redutoras tradicionais; será de destacar a experiência americana no uso de micro turbinas para a redução de pressão com produção simultânea de eletricidade. Em Portugal não se conhecem instalações com esta opção. Fabricantes da República Checa e Áustria, têm tido sucesso em algumas dezenas de instalações de redução de pressão em diversos países europeus (UK, Alemanha, R. Checa, França, etc.). Para determinação de consumos de vapor, para projeto ou mesmo para estimativa em máquinas existentes, disponibiliza-se uma série de equações para os casos mais comuns. Dá-se especial relevo ao problema que se verifica numa grande percentagem de permutadores de calor, que é a estagnação de condensado - “stalled conditions”. Tenta-se também evidenciar as vantagens da recuperação de vapor de flash (infelizmente de pouca tradição em Portugal), e a aplicação de termocompressores. Finalmente aborda-se o benchmarking e monitorização, quer dos custos de vapor quer dos consumos específicos dos produtos. Esta abordagem é algo ligeira, por manifesta falta de estudos publicados. Como trabalhos práticos, foram efetuados levantamentos a instalações de vapor em diversos sectores de atividades; 1. ISEP - Laboratório de Química. Porto, 2. Prio Energy - Fábrica de Biocombustíveis. Porto de Aveiro. 3. Inapal Plásticos. Componentes de Automóvel. Leça do Balio, 4. Malhas Sonix. Tinturaria Têxtil. Barcelos, 5. Uma instalação de cartão canelado e uma instalação de alimentos derivados de soja. Também se inclui um estudo comparativo de custos de vapor usado nos hospitais: quando produzido por geradores de vapor com queima de combustível e quando é produzido por pequenos geradores elétricos. Os resultados estão resumidos em tabelas e conclui-se que se o potencial de poupança se aproxima do referido no início deste trabalho.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The discussion about possibility of deployment of MSW incineration boilers to generate electricity in Brazil is the major topic of this paper. In this article are showed some advantages and disadvantages of this technology, as well as a methodology for the estimate of area for the main equipments of a steam generator for a boiler incineration

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed study of the Bjurbole fusion crust using scanning electron microscopy (SEM) and energy dispersive analysis (EDS) shows that filamentary crystals and ablation spheres may form on the meteoroid surface. Filamentary crystals, hollow spheres, and porous regions of the surface point to a period of intense vapor phase activity during atmospheric passage. Filamentary crystals can be divided into three categories on the basis of bulk composition and morphology. Two types of filamentary crystals are vapor phase condensation products formed during atmospheric entry of the meteoroid. The other type forms by the interaction of seawater with the fusion surface. The density and composition of ablation spheres varies with the flight orientation of the meteorite. The size range and composition of iron-nickel spheres on the surface of Bjurbole are similar to spheres collected in the stratosphere. A comparison of stratospheric dust collections with meteorite surfaces may provide further insight into the mechanisms of meteoroid entry into planetary atmospheres.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed analytical electron microscope (AEM) studies of yellow whiskers produced by chemical vapor deposition (CVD)1 show that two basic types of whiskers are produced at low temperatures (between 1200°C and 1400°C) and low boron to carbon gas ratios. Both whisker types show planar microstructures such as twin planes and stacking faults oriented parallel to, or at a rhombohedral angle to, the growth direction. For both whisker types, the presence of droplet-like terminations containing both Si and Ni indicate that the growth process during CVD is via a vapor-liquid-solid (VLS) mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel electrochemical route is used to form highly {111}-oriented and size-controlled Au nanoprisms directly onto the electrodes of quartz crystal microbalances (QCMs) which are subsequently used as mercury vapor sensors. The Au nanoprism loaded QCM sensors exhibited excellent response–concentration linearity with a response enhancement of up to ~ 800% over a non-modified sensor at an operating temperature of 28 °C. The increased surface area and atomic-scale features (step/defect sites) introduced during the growth of nanoprisms are thought to play a significant role in enhancing the sensing properties of the Au nanoprisms toward Hg vapor. The sensors are shown to have excellent Hg sensing capabilities in the concentration range of 0.123–1.27 ppmv (1.02–10.55 mg m − 3), with a detection limit of 2.4 ppbv (0.02 mg m − 3) toward Hg vapor when operating at 28 °C, and 17 ppbv (0.15 mg m − 3) at 89 °C, making them potentially useful for air monitoring applications or for monitoring the efficiency of Hg emission control systems in industries such as mining and waste incineration. The developed sensors exhibited excellent reversible behavior (sensor recovery) within 1 h periods, and crucially were also observed to have high selectivity toward Hg vapor in the presence of ethanol, ammonia and humidity, and excellent long-term stability over a 33 day operating period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene films with different structures were catalytically grown on the silicon substrate pre-deposited with a gold film by hot filament chemical vapor deposition under different conditions, where methane, hydrogen and nitrogen were used as the reactive gases. The morphological and compositional properties of graphene films were studied using advanced instruments including field emission scanning electron microscopy, micro-Raman spectroscopy and X-ray photoelectron spectroscopy. The results indicate that the structure and composition of graphene films are changed with the variation of the growth conditions. According to the theory related to thermodynamics, the formation of graphene films was theoretically analyzed and the results indicate that the formation of graphene films is related to the fast incorporation and precipitation of carbon. The electron field emission (EFE) properties of graphene films were studied in a high vacuum system of ∼10-6 Pa and the EFE results show that the turn-on field is in a range of 5.2-5.64 V μm-1 and the maximum current density is about 63 μ A cm-2 at the field of 7.7 V μm-1. These results are important to control the structure of graphene films and have the potential applications of graphene in various nanodevices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrogenated carbon nanotips with a low atomic concentration of nitrogen have been synthesized by using a custom-designed plasma-enhanced hot-filament plasma chemical vapor deposition system. The properties (including morphology, structure, composition, photoluminescence, etc.) of the synthesized nitrogenated carbon nanotips are investigated using advanced characterization tools. The room-temperature photoluminescence measurements show that the nitrogenated carbon nanotips can generate two distinct broad emissions located at ∼405 and ∼507 nm, respectively. Through the detailed analysis, it is shown that these two emission bands are attributed to the transition between the lone pair valence and bands, which are related to the sp3 and sp2 C-N bonds, respectively. These results are highly relevant to advanced applications of nitrogenated carbon nanotips in light emitting optoelectronic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanotips have been synthesized from a thin carbon film deposited on silicon by bias-enhanced hot filament chemical vapor deposition under different process parameters. The results of scanning electron microscopy indicate that high-quality carbon nanotips can only be obtained under conditions when the ion flux is effectively drawn from the plasma sustained in a CH4 + NH3 + H2 gas mixture. It is shown that the morphology of the carbon nanotips can be controlled by varying the process parameters such as the applied bias, gas pressure, and the NH3 / H2 mass flow ratios. The nanotip formation process is examined through a model that accounts for surface diffusion, in addition to sputtering and deposition processes included in the existing models. This model makes it possible to explain the major difference in the morphologies of the carbon nanotips formed without and with the aid of the plasma as well as to interpret the changes of their aspect ratio caused by the variation in the ion/gas fluxes. Viable ways to optimize the plasma-based process parameters to synthesize high-quality carbon nanotips are suggested. The results are relevant to the development of advanced plasma-/ion-assisted methods of nanoscale synthesis and processing.