987 resultados para Caldeira a vapor
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The steady increase in the price of oil and its derivatives, carbon credits, the concern with the environment combined with the precipitation of rain water and lack of water resources that Brazil has suffered in 2014 caused a migration of participation sources of energy in the Brazilian energy matrix. The hydropower sector suffered big drop at 2013 and is suffering so far, contributing thus to the generation and cogeneration of thermal energy using renewable energy sources such as: sugarcane bagasse, wood chips, rice husks, among others. The selling price of the electricity market reached the level of R$ 807, 00 MWh in January 2014 (Source: ANEEL), heating the Brazilian thermoelectric sector. Although thermoelectric use in bulk water as vaporizing fluid to produce electricity and use in various processes, water reuse plans have become an important factor in these industries. The increased use of biomass has been the bagasse which is allied to the sugarcane sector, strong market in Brazil, and consists basically use the rest of sugar cane, sugarcane industries that would play out. The sugar and ethanol industry is very unstable and only lasts for 6-8 months a year, and the remaining time in the period known as between crop that corresponds to the planting and harvesting of sugarcane and then enter the period of vintage which is the constant cane harvesting and crushing it. This instability of the market and the thermoelectric idle period leads the thermoelectric industries to seek other sources of renewable energy, such as wood chips (pine, Eucalyptus, Orange), rice husk, sorghum among others, to not be dependent on alcohol sector. The present work aims to study the use of wood chips as an alternative biomass for burning a fuel that essentially uses bagasse, the thermoelectric in question consists of two boilers that produce together 350 t / h ... (Complete Abstract click electronic access below)
Resumo:
Apresenta-se uma avaliação técnico-econômica para o préaquecimento solar da água de reposição em caldeiras de sistemas de vapor abertos. São empregados, para compor um estudo de caso, os dados de uma indústria de laticínios de médio porte situada próximo da cidade do Rio de Janeiro. Quarenta e oito simulações computacionais do sistema de aquecimento solar (SAS) foram realizadas em TRNSYS, correspondendo aos 5% melhores resultados econômicos de uma série de 2.700 simulações mais simples (método φ-f-chart), programados em MATLAB. Foram empregados dados horários de ano típico meteorológico (TMY) para a cidade do Rio de Janeiro. O ganho econômico foi baseado no consumo evitado dos três combustíveis mais comuns na indústria de laticínios, enquanto o custo de investimento foi composto a partir de valores comerciais e da literatura. Os resultados da avaliação econômica mostraram-se desfavoráveis para a substituição de óleo combustível, favoráveis no caso de caldeiras a gás natural, condicionado a existência de subsídios, e bem competitivos para a substituição de GLP. A eficiência térmica do sistema mostrou ser o parâmetro técnico chave para o desempenho econômico, consequentemente, uma vez que a eficiência se mostrou inversamente proporcional tanto ao volume do reservatório quanto à área de coletores, não há uma configuração ótima para o sistema. Não obstante, os resultados permitiram a proposição de políticas públicas para incentivar o uso da energia solar na indústria leiteira e, consequentemente, contribuir para a preservação ambiental.
Resumo:
Curso de Tecnologia Sucroalcooleira. Disciplina Química do Processo. Esquema. Dimensão: 1274x660. Tamanho: 838 Kb.
Resumo:
Pós-graduação em Engenharia Mecânica - FEB
Resumo:
Within the concepts of sustainability, energy audit magnified its importance in managing systems in industrial plants. Can reduce waste and save energy representative, the improvement and development of thermal and electrical systems can be very attractive to business. With the focus on a boiler generating steam, the energy audit aimed to increase efficiency and eliminate energy losses of the heat engine. The boiler in question is commonly called CO boiler because most of the calorific power provided comes from this. Using a fuel gas from the catalyst regeneration process, it has featured in the boiler power generation system of the refinery. Burning a mixture of gaseous components from discarded into the atmosphere, the heat engine can generate tons of steam just as the other boilers installed. The challenge was to work with this gas mixture and obtain maximum efficiency, reduce moisture and enjoy the warmth of the heat exchange have been studied and recommended. Every project, from evaluation of the variables in the composition of fuel gas, to the using of heat exchangers and refrigeration system are suitable for evaluation and improvements
Resumo:
A new approach to generating clean energy has been studied by several researchers, among which one can highlight the steam reforming of biogas. The Biogas is result of decomposition of organic matter and it hasn’t been availed in the global level, instead, the biogas has been burned in flare or discarded into the atmosphere providing damage to the environment. The generation of vector biogas energy can be realized through its steam reforming and this work examines briefly the types of digesters used for biogas generation, studying the process of steam reforming to generate hydrogen as energy vector, analyzing each step in detail, seeking to adapt its main features an ethanol reformer for a biogas reformer. Besides this it is estimated the yield of the reform process and the boiler efficiency for efficiency of the process
Melting, ablation, and vapor phase condensation during atmospheric passage of the Bjurbole Meteorite
Resumo:
A detailed study of the Bjurbole fusion crust using scanning electron microscopy (SEM) and energy dispersive analysis (EDS) shows that filamentary crystals and ablation spheres may form on the meteoroid surface. Filamentary crystals, hollow spheres, and porous regions of the surface point to a period of intense vapor phase activity during atmospheric passage. Filamentary crystals can be divided into three categories on the basis of bulk composition and morphology. Two types of filamentary crystals are vapor phase condensation products formed during atmospheric entry of the meteoroid. The other type forms by the interaction of seawater with the fusion surface. The density and composition of ablation spheres varies with the flight orientation of the meteorite. The size range and composition of iron-nickel spheres on the surface of Bjurbole are similar to spheres collected in the stratosphere. A comparison of stratospheric dust collections with meteorite surfaces may provide further insight into the mechanisms of meteoroid entry into planetary atmospheres.
Resumo:
Detailed analytical electron microscope (AEM) studies of yellow whiskers produced by chemical vapor deposition (CVD)1 show that two basic types of whiskers are produced at low temperatures (between 1200°C and 1400°C) and low boron to carbon gas ratios. Both whisker types show planar microstructures such as twin planes and stacking faults oriented parallel to, or at a rhombohedral angle to, the growth direction. For both whisker types, the presence of droplet-like terminations containing both Si and Ni indicate that the growth process during CVD is via a vapor-liquid-solid (VLS) mechanism.
Resumo:
A novel electrochemical route is used to form highly {111}-oriented and size-controlled Au nanoprisms directly onto the electrodes of quartz crystal microbalances (QCMs) which are subsequently used as mercury vapor sensors. The Au nanoprism loaded QCM sensors exhibited excellent response–concentration linearity with a response enhancement of up to ~ 800% over a non-modified sensor at an operating temperature of 28 °C. The increased surface area and atomic-scale features (step/defect sites) introduced during the growth of nanoprisms are thought to play a significant role in enhancing the sensing properties of the Au nanoprisms toward Hg vapor. The sensors are shown to have excellent Hg sensing capabilities in the concentration range of 0.123–1.27 ppmv (1.02–10.55 mg m − 3), with a detection limit of 2.4 ppbv (0.02 mg m − 3) toward Hg vapor when operating at 28 °C, and 17 ppbv (0.15 mg m − 3) at 89 °C, making them potentially useful for air monitoring applications or for monitoring the efficiency of Hg emission control systems in industries such as mining and waste incineration. The developed sensors exhibited excellent reversible behavior (sensor recovery) within 1 h periods, and crucially were also observed to have high selectivity toward Hg vapor in the presence of ethanol, ammonia and humidity, and excellent long-term stability over a 33 day operating period.
Resumo:
Graphene films with different structures were catalytically grown on the silicon substrate pre-deposited with a gold film by hot filament chemical vapor deposition under different conditions, where methane, hydrogen and nitrogen were used as the reactive gases. The morphological and compositional properties of graphene films were studied using advanced instruments including field emission scanning electron microscopy, micro-Raman spectroscopy and X-ray photoelectron spectroscopy. The results indicate that the structure and composition of graphene films are changed with the variation of the growth conditions. According to the theory related to thermodynamics, the formation of graphene films was theoretically analyzed and the results indicate that the formation of graphene films is related to the fast incorporation and precipitation of carbon. The electron field emission (EFE) properties of graphene films were studied in a high vacuum system of ∼10-6 Pa and the EFE results show that the turn-on field is in a range of 5.2-5.64 V μm-1 and the maximum current density is about 63 μ A cm-2 at the field of 7.7 V μm-1. These results are important to control the structure of graphene films and have the potential applications of graphene in various nanodevices.
Resumo:
Nitrogenated carbon nanotips with a low atomic concentration of nitrogen have been synthesized by using a custom-designed plasma-enhanced hot-filament plasma chemical vapor deposition system. The properties (including morphology, structure, composition, photoluminescence, etc.) of the synthesized nitrogenated carbon nanotips are investigated using advanced characterization tools. The room-temperature photoluminescence measurements show that the nitrogenated carbon nanotips can generate two distinct broad emissions located at ∼405 and ∼507 nm, respectively. Through the detailed analysis, it is shown that these two emission bands are attributed to the transition between the lone pair valence and bands, which are related to the sp3 and sp2 C-N bonds, respectively. These results are highly relevant to advanced applications of nitrogenated carbon nanotips in light emitting optoelectronic devices.
Resumo:
Carbon nanotips have been synthesized from a thin carbon film deposited on silicon by bias-enhanced hot filament chemical vapor deposition under different process parameters. The results of scanning electron microscopy indicate that high-quality carbon nanotips can only be obtained under conditions when the ion flux is effectively drawn from the plasma sustained in a CH4 + NH3 + H2 gas mixture. It is shown that the morphology of the carbon nanotips can be controlled by varying the process parameters such as the applied bias, gas pressure, and the NH3 / H2 mass flow ratios. The nanotip formation process is examined through a model that accounts for surface diffusion, in addition to sputtering and deposition processes included in the existing models. This model makes it possible to explain the major difference in the morphologies of the carbon nanotips formed without and with the aid of the plasma as well as to interpret the changes of their aspect ratio caused by the variation in the ion/gas fluxes. Viable ways to optimize the plasma-based process parameters to synthesize high-quality carbon nanotips are suggested. The results are relevant to the development of advanced plasma-/ion-assisted methods of nanoscale synthesis and processing.