998 resultados para CUMULUS CELLS
Resumo:
The present in vitro experiments were designed to evaluate the ability of bovine cumulus-oocyte-complexes (COCs)to produce steroids and also to evaluate the modulatory effects of added estradiol, progesterone and testosterone on the steroidogenic activity of COCs. Considerable estradiol accumulation was observed in the control maturation medium for in vitro maturation of bovine COCs during the 24h of maturation (P < 0.05). When testosterone was added to the medium at various concentrations, a slight estradiol accumulation occurred, which, however, was lower (P < 0.05) than that observed in the control medium. Slight estradiol accumulation was observed in maturation medium containing progesterone at concentrations of 2.5, 5.0 and 10.0 mug/ml, but these increases were less (P < 0.05) than those observed in the control medium. However, in the presence of 1.0 mug/ml progesterone, estradiol accumulation was equal to that of the control medium (P > 0.05). Progesterone accumulation (P < 0.05) was observed in the control medium for in vitro maturation of bovine COCs. When estradiol was added to the maturation medium, progesterone accumulation was observed, but was significant (P < 0.05) only when the medium was supplemented with the lesser concentrations of estradiol utilized in the experiment (1.0 mug/ml). The results demonstrated that (1) cumulus cells of bovine COCs are able to secrete estradiol and progesterone in culture systems for in vitro maturation, and this steroidogenesis is modulated by the steroids progesterone, testosterone and estradiol, and (2) the addition of estradiol to the in vitro maturation medium of bovine oocytes should be reviewed, since cumulus cells of COCs have been demonstrated to secrete estradiol in the maturation medium. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The aim of this study was to characterise the methylation pattern in a CpG island of the IGF2 gene in cumulus cells from 1-3 mm and a parts per thousand yenaEuro parts per thousand 8.0 mm follicles and to evaluate the effects of in vitro maturation on this pattern.Genomic DNA was treatment with sodium bisulphite. Nested PCR using bisulphite-treated DNA was performed, and DNA methylation patterns have been characterised.There were no differences in the methylation pattern among groups (P > 0.05). Cells of pre-IVM and post-IVM from small follicles showed methylation levels of 78.17 +/- 14.11 % and 82.93 +/- 5.86 %, respectively, and those from large follicles showed methylation levels of 81.81 +/- 10.40 % and 79.64 +/- 13.04 %, respectively. Evaluating only the effect of in vitro maturation, cells of pre-IVM and post-IVM COCs showed methylation levels of 80.17 +/- 12.01 % and 81.19 +/- 10.15 %.In conclusion, the methylation levels of the cumulus cells of all groups were higher than that expected from the imprinted pattern of somatic cells. As the cumulus cells from the pre-IVM follicles were not subjected to any in vitro manipulation, the hypermethylated pattern that was observed may be the actual physiological methylation pattern for this particular locus in these cells. Due the importance of DNA methylation in oogenesis, and to be a non-invasive method for determining oocyte quality, the identification of new epigenetic markers in cumulus cells has great potential to be used to support reproductive biotechniques in humans and other mammals.
Resumo:
Contents The aim of this study was to determine the effect of temporary inhibition of meiosis using the cyclin-dependent kinase inhibitor butyrolactone I (BLI) on gene expression in bovine oocytes and cumulus cells. Immature bovine cumulusoocyte complexes (COCs) were assigned to groups: (i) Control COCs collected immediately after recovery from the ovary or (ii) after in vitro maturation (IVM) for 24 h, (iii) Inhibited COCs collected 24 h after incubation with 100 mu m BLI or (iv) after meiotic inhibition for 24 h followed by IVM for a further 22 h. For mRNA relative abundance analysis, pools of 10 denuded oocytes and respective cumulus cells were collected. Transcripts related to cell cycle regulation and oocyte competence were evaluated in oocytes and cumulus cells by quantitative real-time PCR (qPCR). Most of the examined transcripts were downregulated (p < 0.05) after IVM in control and inhibited oocytes (19 of 35). Nine transcripts remained stable (p > 0.05) after IVM in control oocytes; only INHBA did not show this pattern in inhibited oocytes. Seven genes were upregulated after IVM in control oocytes (p < 0.05), and only PLAT, RBP1 and INHBB were not upregulated in inhibited oocytes after IVM. In cumulus cells, six genes were upregulated (p < 0.05) after IVM and eight were downregulated (p < 0.05). Cells from inhibited oocytes showed the same pattern of expression regarding maturation profile, but were affected by the temporary meiosis inhibition of the oocyte when the same maturation stages were compared between inhibited and control groups. In conclusion, changes in transcript abundance in oocytes and cumulus cells during maturation in vitro were mostly mirrored after meiotic inhibition followed by maturation.
Resumo:
The effect of melatonin during in vitro maturation (IVM) on DNA damage of cumulus cells (CCs) from bovine cumulus-oocyte complexes (COCs) and embryo development was evaluated. COCs from abattoir ovaries were cultured in maturation medium (MM) with 0.5 mu g/ml FSH and 5.0 mu g/ml LH (FSH-LH); 10(-9) M melatonin (MEL) or FSH-LH + MEL (FSH-LH-MEL). After 24 h of in vitro maturation, the CCs surrounding the oocyte were subjected to DNA analysis by Comet assay. After in vitro fertilization and in vitro embryo culture, the embryo development rates were evaluated on day 2 post insemination (cleavage) and days 7-8 (blastocyst). The percentage of CCs with no DNA damage was significantly superior in MEL group (37.6 +/- 2.4) than in FSH-LH-MEL (28.0 +/- 2.4) and FSH-LH (17.8 +/- 2.41) groups. Cleavage and blastocysts rates were similar among groups. Melatonin during IVM protects the CCs from DNA damage but this effect did not influence embryo development in vitro. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
To detect expression of bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) in oocytes, and their receptor type 2 receptor for BMPs (BMPR2) in cumulus cells in women with polycystic ovary syndrome (PCOS) undergoing in vitro fertilization (IVF), and determine if BMPR2, BMP15, and GDF9 expression correlate with hyperandrogenism in FF of PCOS patients. Prospective case-control study. Eighteen MII-oocytes and their respective cumulus cells were obtained from 18 patients with PCOS, and 48 MII-oocytes and cumulus cells (CCs) from 35 controls, both subjected to controlled ovarian hyperstimulation (COH), and follicular fluid (FF) was collected from small (10-14 mm) and large (> 18 mm) follicles. RNeasy Micro Kit (Qiagen(A (R))) was used for RNA extraction and gene expression was quantified in each oocyte individually and in microdissected cumulus cells from cumulus-oocyte complexes retrieved from preovulatory follicles using qRT-PCR. Chemiluminescence and RIA assays were used for hormone assays. BMP15 and GDF9 expression per oocyte was higher among women with PCOS than the control group. A positive correlation was found between BMPR2 transcripts and hyperandrogenism in FF of PCOS patients. Progesterone values in FF were lower in the PCOS group. We inferred that BMP15 and GDF9 transcript levels increase in mature PCOS oocytes after COH, and might inhibit the progesterone secretion by follicular cells in PCOS follicles, preventing premature luteinization in cumulus cells. BMPR2 expression in PCOS cumulus cells might be regulated by androgens.