23 resultados para CTCF


Relevância:

20.00% 20.00%

Publicador:

Resumo:

SUMMARY Genomic imprinting is an epigenetic mechanism of transcriptional regulation that ensures restriction of expression of a subset of mammalian genes to a single parental allele. The best studied example of imprinted gene regulation is the Igf2/H19 locus, which is also the most commonly altered by loss of imprinting (LOT) in cancer. LOT is associated with numerous hereditary diseases and several childhood, and adult cancers. Differential expression of reciprocal H19 and 1gf2 alleles in somatic cells depends on the methylation status of the imprinting control region (ICR) which regulates binding of CTCF, an ubiquitously expressed 11-zinc finger protein that binds specifically to non-methylated maternal ICR and thereby attenuates expression of Igf2, while it does not bind to methylated paternal ICR, which enables Igf2 expression. Initial ICR methylation occurs during gametogenesis by an as yet unknown mechanism. The accepted hypothesis is that the event of differential maternal and paternal DNA methylation depends on germ-line specific proteins. Our Laboratory identified a novel 11-zinc-finger protein CTCF-T (also known as CTCFL and BORIS) that is uniquely expressed in the male germ-line and is highly homologous within its zinc-finger region with CTCF. The amino-acid sequences flanking the zinc-finger regions of CTCF and CTCF-T have widely diverged, suggesting that though they could bind to the same DNA targets (ICRs) they are likely to have different functions. Interestingly, expression of CTCF-T and CTCF is mutually exclusive; CTCF-T-positive (CTCF-negative) cells occur in the stage of spermatogenesis that coincides with epigenetic reprogramming, including de novo DNA methylation. In our study we demonstrate the role that CTCF-T plays in genomic imprinting. Here we show that CTCF-T binds in vivo to the ICRs of Igf2/H19 and Dlk/Gt12 imprinted genes. In addition, we identified two novel proteins interacting with CTCF-T: a protein arginine methyltransferase PRMT7 and an arginine-rich histone H2A variant that we named trH2A. These interactions were confirmed and show that the two proteins interact with the amino-teiminal region of CTCF-T. Additionally, we show interaction of the amino- terminal region of CTCF-T with histones H1, H2A and H3. These results suggest that CTCF-T is a sequence-specific DNA (ICR) binding protein that associates with histones and recruits PRMT7. Interestingly, PRMT7 has a histone-methyltransferase activity. It has been shown that histone methylation can mark chromatin regions thereby directing DNA-methylation; thus, our hypothesis is that the CTCF-T protein-scaffold directs PRMT7 to methylate histone(s) assembled on ICRs, which marks chromatin for the recruitment of the de novo DNA methyltransferases to methylate DNA. To test this hypothesis, we developed an in vivo DNA-methylation assay using Xenopus laevis' oocytes, where H19 ICR and different expression cDNAs, including CTCF-T, PRMT7 and the de novo DNA methyltransferases (Dnmt3a, Dnmt3b and Dnmt3L) are microinjected into the nucleus. The methylation status of CpGs within the H19 ICR was analysed 48 or 72 hours after injection. Here we demonstrate that CpGs in the ICR are methylated in the presence of both CTCF-T and PRMT7, while control oocytes injected only with ICR did not show any methylation. Additionally, we showed for the first time that Dnmt3L is crucial for the establishment of the imprinting marks on H19 ICR. Moreover, we confirmed that Dnmt3a and Dnmt3b activities are complementary. Our data indicate that all three Dnmt3s are important for efficient de novo DNA methylation. In conclusion, we propose a mechanism for the establishment of de novo imprinting marks during spermatogenesis: the CTCF-T/PRMT7 protein complex directs histone methylation leading to sequence-specific de novo DNA methylation of H19 ICR. RESUME L'empreinte génomique parentale est un mécanisme épigénétique de régulation transcriptionelle qui se traduit par une expression différentielle des deux allèles de certains gènes, en fonction de leur origine parentale. L'exemple le mieux caractérisé de gènes soumis à l'empreinte génomique parentale est le locus Igf2/H19, qui est aussi le plus fréquemment altéré par relaxation d'empreinte (en anglais: loss of imprinting, LOI) dans les cancers. Cette relaxation d'empreinte est aussi associée à de nombreuses maladies héréditaires, ainsi qu'à de nombreux cancers chez l'enfant et l'adulte. Dans les cellules somatiques, les différences d'expression des allèles réciproques H19 et Ig12 est sous le contrôle d'une région ICR (Imprinting Control Region). La méthylation de cette région ICR régule l'ancrage de la protéine à douze doigts de zinc CTCF, qui se lie spécifiquement à l'ICR maternel non-méthylé, atténuant ainsi l'expression de Igf2, alors qu'elle ne s'ancre pas à l'ICR paternel méthyle. Le mécanisme qui accompagne la méthylation initiale de la région ICR durant la gamétogenèse n'a toujours pas été élucidé. L'hypothèse actuelle propose que la différence de méthylation entre l'ADN maternel et paternel résulte de l'expression de protéines propres aux zones germinales. Notre laboratoire a récemment identifié une nouvelle protéine à douze doigts de zinc, CTCF-T (aussi dénommée CTCFL et BORRIS), qui est exprimée uniquement dans les cellules germinales mâles, dont la partie à douze doigts de zinc est fortement homologue à la protéine CTCF. La séquence d'acides aminés de part et d'autre de cette région est quant à elle très divergente, ce qui implique que CTCF-T se lie sans doute au même ADN cible que CTCF, mais possède des fonctions différentes. De plus, l'expression de CTCF-T et de CTCF s'oppose mutuellement; l'expression de la protéine CTCF-T (cellules CTCF-T positives, CTCF negatives) qui a lieu pendant la spermatogenèse coïncide avec la reprogrammation épigénétique, notamment la méthylation de novo de l'ADN. La présente étude démontre le rôle essentiel joué par la protéine CTCF-T dans l'acquisition de l'empreinte génomique parentale. Nous montrons ici que CTCF-T s'associe in vivo avec les régions ICR des loci Igf2/H19 et Dlk/Gt12. Nous avons également identifié deux nouvelles protéines qui interagissent avec CTCF-T : une protéine arginine méthyl transférase PRMT7, et un variant de l'histone H2A, riche en arginine, que nous avons dénommé trH2A. Ces interactions ont été analysées plus en détail, et confinnent que ces deux protéines s'associent avec la région N-terminale de CTCF-T. Aussi, nous présentons une interaction de la région N-terminale de CTCF-T avec les histones H1, H2, et H3. Ces résultats suggèrent que CTCF-T est une protéine qui se lie spécifiquement aux régions ICR, qui s'associe avec différents histones et qui recrute PRMT7. PRMT7 possède une activité méthyl-tansférase envers les histones. Il a été montré que la méthylation des histones marque certains endroits de la chromatine, dirigeant ainsi la méthylation de l'ADN. Notre hypothèse est donc la suivante : la protéine CTCF-T sert de base qui dirige la méthylation des histones par PRMT7 dans les régions ICR, ce qui contribue à marquer la chromatine pour le recrutement de nouvelles méthyl transférases pour méthyler l'ADN. Afin de valider cette hypothèse, nous avons développé un système de méthylation de l'ADN in vivo, dans des oeufs de Xenopus laevis, dans le noyau desquels nous avons mico-injecté la région ICR du locus H19, ainsi que différents vecteurs d'expression pour CTCF-T, PRMT7, et les de novo méthyl transférases (Dnmt3a, Dnmt3b et Dnmt3L). Les CpGs méthyles de la région ICR du locus H19 ont été analysé 48 et 72 heures après l'injection. Cette technique nous a permis de démontrer que les CpGs de la région ICR sont méthyles en présence de CTCF-T et de PRMT7, tandis que les contrôles injectés seulement avec la région ICR ne présentent aucun signe de méthylation. De plus, nous démontrons pour la première fois que la protéine méthyl transférase Dnmt3L est déterminant pour l'établissement de l'empreinte génomique parentale au niveau de la région ICR du locus H19. Aussi, nous confirmons que les activités méthyl transférases de Dnmt3a et Dnmt3b sont complémentaires. Nos données indiquent que les trois protéines Dnmt3 sont impliquées dans la méthylation de l'ADN. En conclusion, nous proposons un mécanisme responsable de la mise en place de nouvelles empreintes génomiques pendant la spermatogenèse : le complexe protéique CTCF-T/PRMT7 dirige la méthylation des histones aboutissant à la méthylation de novo de l'ADN au locus H19.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RESUME La télomérase confère une durée de vie illimitée et est réactivée dans la plupart des cellules tumorales. Sa sous-unité catalytique hTERT est définie comme le facteur limitant pour son activation. De l'identification de facteurs liant la région régulatrice d'hTERT, au rôle de la méthylation de l'ADN et de la modification des histones, de nombreux modèles de régulation ont été suggérés. Cependant, aucun de ces modèles n'a pu expliquer l'inactivation de la télomérase dans la plupart des cellules somatiques et sa réactivation dans la majorité des cellules tumorales. De plus, les observations contradictoires entre le faible niveau d'expression d'ARN messager d'hTERT dans les cellules télomérase-positives et la très forte activité transcriptionnelle du promoteur d'hTERT en transfection restent incomprises. Dans cette étude, nous avons montré que la région proximale du gène hTERT (exon 1 et 2) était impliquée dans la répression de l'activité de son promoteur. Nous avons identifié le facteur CTCF comme étant un inhibiteur du promoteur d'hTERT, en se liant au niveau de son premier exon. La méthylation de l'exon 1 du gène hTERT, couramment observée dans les tumeurs mais pas dans les cellules normales, empêcherait la liaison de CTCF. L'étude du profil de méthylation du promoteur d'hTERT indique qu'une partie du promoteur reste déméthylée et qu'elle semble suffisante pour permettre une faible activité transcriptionnelle du gène hTERT. Ainsi, la méthylation particulière des régions régulatrices d'hTERT inhibe la liaison de CTCF tout en permettant une faible transcription du gène. Cependant, dans certaines cellules tumorales, le promoteur et la région proximale du gène hTERT ne sont pas méthylés. Dans les lignées cellulaires tumorales de tesitcules et d'ovaires, l'inhibition de CTCF est contrée par son paralogue BORIS, qui se lie aussi au niveau de l'exon 1 d'hTERT, mais permet ainsi l'activation du promoteur. L'étude de l'expression du gène BORIS montre qu'il est exclusivement exprimé dans les tissus normaux de testicules et d'ovaires jeunes, ainsi qu'à différents niveaux dans la plupart des tumeurs. Sa transcription est sous le contrôle de deux promoteurs. Le promoteur proximal est régulé par méthylation et un transcrit alternatif majoritaire, délété de l'exon 6, est trouvé lorsque ce promoteur est actif. Tous ces résultats conduisent à un modèle de régulation du gène hTERT qui tient compte du profil épigénétique du gène et qui permet d'expliquer le faible taux de transcription observé in vivo. De plus, l'expression de BORIS dans les cancers et son implication dans l'activation du gène hTERT pourrait permettre de comprendre les phénomènes de dérégulation épigénétique et d'immortalisation qui ont lieu durant la tumorigenèse. SUMMARY Telomerase confers an unlimited lifespan, and is reactivated in most tumor cells. The catalytic subunit of telomerase, hTERT, is defined as the limiting factor for telomerase activity. Between activators and repressors that bind to the hTERT 5' regulatory region, and the role of CpG methylation and histone acetylation, an abundance of regulatory models have been suggested. None of these models can explain the silence of telomerase in most somatic cells and its reactivation in tumor cells. Moreover, the contradictory observations of the low level of hTERT mRNA in telomerase-positive cells and the high transcriptional activity of the hTERT promoter in transfection experiments remain unresolved. In this study, we demonstrated that the proximal exonic region of the hTERT gene (exon 1 and 2) is involved in the inhibition of its promoter. We identified the protein CTCF as the inhibitor of the hTERT promoter, through its binding to the first exon. The methylation of the first exon region, which is often observed in cancer cells but not in noimal cells, represses CTCF binding. Study of hTERT promoter methylation shows a partial demethylation sufficient to activate the transcription of the hTERT gene. Therefore, we demonstrated that the particular methylation profile of the hTERT regulatory sequences inhibits the binding of CTCF, while it allows a low transcription of the gene. Nevertheless, in some tumor cells, the promoter and the proximal exonic region of hTERT are unmethylated. In testicular and ovarian cancer cell lines, CTCF inhibition is counteracted by its BORIS paralogue that also binds the hTERT first exon but allows the promoter activation. The study of BORIS gene regulation showed that this factor is exclusively expressed in normal tissue of testis and ovary of young woman, as well as in almost all tumors with different levels. Two promoters were found to induce its transcription. The proximal promoter was regulated by methylation. Moreover, a major alternative transcript, deleted of the exon 6, is detected when this promoter is active. All these results lead to a model for hTERT regulation that takes into account the epigenetic profile of the gene and provides an explanation for the low transcriptional level observed in vivo. BORIS expression in cancers and its implication in hTERT activation might also permit the understanding of epigenetic deregulation and immortalization phenomena that occur during tumorigenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aberrant methylation of seven potential binding sites of the CTCF factor in the differentially methylated region upstream of the H19 gene (H19-DMR) has been suggested as critical for the regulation of IGF2 and H19 imprinted genes. In this study, we analyzed the allele-specific methylation pattern of CTCF binding sites 5 and 6 using methylationsensitive restriction enzyme PCR followed by RFLP analysis in matched tumoral and lymphocyte DNA from head-and-neck squamous cell carcinoma (HNSCC) patients, as well as in lymphocyte DNA from control individuals who were cancer-free. The monoallelic methylation pattern was maintained in CTCF binding site 5 in 22 heterozygous out of 91 samples analyzed. Nevertheless, a biallelic methylation pattern was detected in CTCF binding site 6 in a subgroup of HNSCC patients as a somatic acquired feature of tumor cells. An atypical biallelic methylation was also observed in both tumor and lymphocyte DNA from two patients, and at a high frequency in the control group (29 out of 64 informative controls). Additionally, we found that the C/T transition detected by HhaI RFLP suppressed one dinucleotide CpG in critical CTCF binding site 6, of a mutation showing polymorphic frequencies. Although a heterogeneous methylation pattern was observed after DNA sequencing modified by sodium bisulfite, the biallelic methylation pattern was confirmed in 9 out of 10 HNSCCs. These findings are likely to be relevant in the epigenetic regulation of the DMR, especially in pathological conditions in which the imprinting of IGF2 and H19 genes is disrupted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Loss of allele-specific expression by the imprinted genes IGF2 and H19 has been correlated with a differentially methylated region (DMR) upstream to the H19 gene. The H19-DMR contains seven potential CCCTC-binding factor (CTCF) binding sites. CTCF is a chromatin insulator and a multifunctional transcription factor whose binding to the H19-DMR is suppressed by DNA methylation. Our study included a group of 41 head and neck squamous cell carcinoma (HNSCC) samples. The imprinting status of the H19 gene was analyzed in 11 out of 35 positive cases for H19 gene expression, and only 1 of them showed loss of imprinting. We detected a significant correlation (P=0.041, Fisher's exact test) between H19 expression and tumor recurrence. Among H19 positive cases, six were T2, in which five developed recurrence and/or metastasis. Inversely, in the group of tumors that showed no H19 gene expression, 5 out of 24 were T2 and only I presented regional recurrence. These data support the hypothesis that H19 expression could be used as a prognostic marker to indicate recurrence in early stage tumors. We also examined the methylation of the CTCF binding site 1 in a subgroup of these samples. The H19 gene silencing and loss of imprinting were not correlated with the methylation pattern of the CTCF binding site 1. However, the significant correlation between H19 expression and tumor recurrence suggest that this transcript could be a marker for the progression of HNSCC. (c) 2005 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geprägte Gene besitzen die Besonderheit, dass sie jeweils nur von einem Allel exprimiert werden und in der Regel in Imprinting Clustern (ICs) im Genom vorliegen. Bei der Regulation in solchen ICs spielen differentiell methylierte Imprinting Kontrollregionen (ICRs) und dort stattfindende Proteinbindungen eine wichtige Rolle. Die essentielle Bedeutung der CTCF-Bindung an die ICR1 in 11p15.5 für die Expressionsregulation der geprägten Gene H19 und IGF2 ist bereits bekannt. In der vorliegenden Arbeit sollte die Bindung von Kaiso an die unmethylierte ICR1 bei humanen Zellen mit maternaler uniparentaler Disomie von 11p15 (upd(11p15)mat) nachgewiesen und die genaue Bindungsverteilung von Kaiso und CTCF in den B-Repeats der Kontrollregion bestimmt werden. Cis-regulatorische und chromosomenübergreifende transkriptionelle Effekte der ICR1-Proteinbindungen sollten dann durch qPCR-Analysen geprägter Gene bei Zellen mit maternaler und paternaler upd(11p15) und nach siRNA-basierter Herunterregulation der beiden Proteine in Zellen mit upd(11p15)mat analysiert werden. In der vorliegenden Arbeit konnte erstmals gezeigt werden, dass Kaiso an die unmethylierte ICR1 bindet. Dabei kann zumindest von einer Bindestellennutzung in der distalen ICR1-Hälfte ausgegangen werden. Für CTCF hingegen wurde eine Nutzung aller analysierten Repeats in beiden ICR1-Hälften gefunden. In der maternalen bzw. paternalen upd(11p15) entspricht die Expression der 11p15.5-Gene IGF2, H19, CDKN1C und KCNQ1OT1 dem jeweiligen Disomie-Status. Von den nicht auf Chromosom 11 gelegenen geprägten Genen zeigen MEST und PLAGL1 bei Zellen mit upd(11p15)pat sowie PEG3 und GRB10 bei der upd(11p15)mat eine stärkere Expression. Ein CTCF-knockdown in Zellen mit upd(11p15)mat führt zur IGF2-Expressionssteigerung. Dies tritt in noch stärkerem Maße beim knockdown von Kaiso auf, wobei hier zusätzlich eine gesteigerte Expression von H19 vorliegt. Des Weiteren findet man beim CTCF-knockdown einen MEST-Expressionsanstieg und beim Kaiso-knockdown gesteigerte Expressionen der Gene PEG3, GRB10 und PLAGL1. Damit lassen sich sowohl eigenständige cis-regulatorische Effekte der ICR1-Bindung beider Proteine auf geprägte Gene des IC1 als auch chromosomenübergreifende Effekte erkennen. Vor allem die starken H19-Expressionsanstiege beim Kaiso-knockdown treten korrelierend mit Veränderungen von geprägten Genen anderer Chromosomen auf. Damit unterstützen die Daten die Theorie, dass die Expressionsregulation geprägter Gene koordiniert in einer Art Netzwerk stattfinden könnte und dabei bestimmte Faktoren wie H19 und PLAGL1 eine übergeordnete Regulatorfunktion besitzen, wie es in Vergangenheit in der Maus beschrieben wurde. Die Expressionsanalysen von PLAGL1 und MEST deuten darüber hinaus durch ihre tendenziell übereinstimmenden Werte bei der paternalen upd mit hypermethylierter ICR1 und den knockdowns auf die Existenz von Chromatin-Interaktionen zwischen der ICR1 und Abschnitten auf den Chromosomen 6 und 7 hin, ggf. mit einem entsprechenden lokalen Effekt der Proteine in diesen Loci. Proteinbindungen an die maternale ICR1 scheinen damit sowohl cis-regulatorisch die Transkription der geprägten Gene IGF2 und H19 zu beeinflussen als auch durch die H19-Expression ein funktionelles Netzwerk geprägter Gene als trans-Faktor zu regulieren und für Interaktionen zwischen verschiedenen Chromosomen mit transkriptionsregulierender Wirkung verantwortlich zu sein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diversity of T cell receptors (TCR) and immunoglobulins (Ig) is generated by V(D)J recombination of antigen receptor (AgR) loci. The Tcra-Tcrd locus is of particular interest because it displays a nested organization of Tcrd and Tcra gene segments and V(D)J recombination follows an intricate developmental program to assemble both TCRδ and TCRα repertoires. However, the mechanisms that dictate the developmental regulation of V(D)J recombination of the Tcra-Tcrd locus remain unclear.

We have previously shown that CCCTC-binding factor (CTCF) regulates Tcra gene transcription and rearrangement through organizing chromatin looping between CTCF- binding elements (CBEs). This study is one of many showing that CTCF functions as a chromatin organizer and transcriptional regulator genome-wide. However, detailed understanding of the impact of specific CBEs is needed to fully comprehend the biological function of CTCF and how CTCF influences the generation of the TCR repertoire during thymocyte development. Thus, we generated several mouse models with genetically modified CBEs to gain insight into the CTCF-dependent regulation of the Tcra-Tcrd locus. We revealed a CTCF-dependent chromatin interaction network at the Tcra-Tcrd locus in double-negative thymocytes. Disruption of a discrete chromatin loop encompassing Dδ, Jδ and Cδ gene segments allowed a single Vδ segment to frequently contact and rearrange to diversity and joining gene segments and dominate the adult TCRδ repertoire. Disruption of this loop also narrowed the TCRα repertoire, which, we believe, followed as a consequence of the restricted TCRδ repertoire. Hence, a single CTCF-mediated chromatin loop directly regulates TCRδ diversity and indirectly regulates TCRα diversity. In addition, we showed that insertion of an ectopic CBE can modify chromatin interactions and disrupt the rearrangement of particular Vδ gene segments. Finally, we investigated the role of YY1 in early T cell development by conditionally deleting YY1 in developing thymocytes. We found that early ablation of YY1 caused severe developmental defects in the DN compartment due to a dramatic increase in DN thymocyte apoptosis. Furthermore, late ablation of YY1 resulted in increased apoptosis of DP thymocytes and a restricted TCRα repertoire. Mechanistically, we showed that p53 was upregulated in both DN and DP YY1-deficient thymocytes. Eliminating p53 in YY1-deficient thymocytes rescued the survival and developmental defects, indicating that these YY1-dependent defects were p53-mediated. We conclude that YY1 is required to maintain cell viability during thymocyte development by thwarting the accumulation of p53.

Overall, this thesis work has shown that CTCF-dependent looping provides a central framework for lineage- and developmental stage-specific regulation of Tcra-Tcrd gene expression and rearrangements. In addition, we identified YY1 as a novel regulator of thymocyte viability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enhancer regions and transcription start sites of estrogen-target regulated genes are connected by means of Estrogen Receptor long-range chromatin interactions. Yet, the complete molecular mechanisms controlling the transcriptional output of engaged enhancers and subsequent activation of coding genes remain elusive. Here, we report that CTCF binding to enhancer RNAs is enriched when breast cancer cells are stimulated with estrogen. CTCF binding to enhancer regions results in modulation of estrogen-induced gene transcription by preventing Estrogen Receptor chromatin binding and by hindering the formation of additional enhancer-promoter ER looping. Furthermore, the depletion of CTCF facilitates the expression of target genes associated with cell division and increases the rate of breast cancer cell proliferation. We have also uncovered a genomic network connecting loci enriched in cell cycle regulator genes to nuclear lamina that mediates the CTCF function. The nuclear lamina and chromatin interactions are regulated by estrogen-ER. We have observed that the chromatin loops formed when cells are treated with estrogen establish contacts with the nuclear lamina. Once there, the portion of CTCF associated with the nuclear lamina interacts with enhancer regions, limiting the formation of ER loops and the induction of genes present in the loop. Collectively, our results reveal an important, unanticipated interplay between CTCF and nuclear lamina to control the transcription of ER target genes, which has great implications in the rate of growth of breast cancer cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RESUME La télomérase est une enzyme dite "d'immortalité" qui permet aux cellules de maintenir la longueur de leurs télomères, ce qui confère une capacité de réplication illimitée aux cellules reproductrices et cancéreuses. A l'inverse, les cellules somatiques normales, qui n'expriment pas la télomérase, ont une capacité de réplication limitée. La sous-unité catalytique de la télomérase, hTERT, est définie comme le facteur limitant l'activité télomérasique. Entre activateurs et répresseurs, le rôle de la méthylation de l'ADN et de l'acétylation des histones, de nombreux modèles ont été suggérés. La découverte de l'implication de CTCF dans la régulation transcriptionnelle de hTERT explique en partie le mécanisme de répression de la télomérase dans la plupart des cellules somatiques et sa réactivation dans les cellules tumorales. Dans les cellules télomérase-positives, l'activité inhibitrice de CTCF est bloquée par un mécanisme dépendent ou non de la méthylation. Dans la plupart des carcinomes, une hyperméthylation de la région 5' de hTERT bloque l'effet inhibiteur de CTCF, alors qu'une petite région hypométhylée permet un faible niveau de transcription du gène. Nous avons démontré que la protéine MBD2 se lie spécifiquement sur la région 5' méthylée de hTERT dans différentes lignées cellulaires et qu'elle est impliquée dans la répression partielle de la transcription de hTERT dans les cellules tumorales méthylées. Par contre, nous avons montré que dans les lymphocytes B normaux et néoplasiques, la régulation de hTERT est indépendante de la méthylation. Dans ces cellules, le facteur PAX5 se lie sur la région 5' de hTERT en aval du site d'initiation de la traduction (ATG). L'expression exogène de PAX5 dans les cellules télomérase-négatives active la transcription de hTERT, alors que la répression de PAX5 dans les cellules lymphomateuses inhibe la transcription du gène. PAX5 est donc directement impliqué dans l'activation de l'expression de hTERT dans les lymphocytes B exprimant la télomérase. Ces résultats révèlent des différences entre les niveaux de méthylation de hTERT dans les cellules de carcinomes et les lymphocytes B exprimant la télomérase. La méthylation de hTERT en tant que biomarqueur de cancer a été évaluée, puis appliquée à la détection de métastases. Nous avons ainsi montré que la méthylation de hTERT est positivement corrélée au diagnostic cytologique dans les liquides céphalorachidiens. Nos résultats conduisent à un modèle de régulation de hTERT, qui aide à comprendre comment la transcription de ce gène est régulée par CTCF, avec un mécanisme lié ou non à la méthylation du gène hTERT. La méthylation de hTERT s'est aussi révélée être un nouveau et prometteur biomarqueur de cancer. SUMMARY Human telomerase is an "immortalizing" enzyme that enables cells to maintain telomere length, allowing unlimited replicative capacity to reproductive and cancer cells. Conversely, normal somatic cells that do not express telomerase have a finite replicative capacity. The catalytic subunit of telomerase, hTERT, is defined as the limiting factor for telomerase activity. Between activators and repressors, and the role of DNA methylation and histone acetylation, an abundance of hTERT regulatory models have been suggested. The discovery of the implication of CTCF in the transcriptional regulation of hTERT in part explained the mechanism of silencing of telomerase in most somatic cells and its reactivation in neoplastic cells. In telomerase-positive cells, the inhibitory activity of CTCF is blocked by methylation-dependent and -independent mechanisms. In most carcinoma cells, hypermethylation of the hTERT 5' region has been shown to block the inhibitory effect of CTCF, while a short hypomethylated region allows a low transcription level of the gene. We have demonstrated that MBD2 protein specifically binds the methylated 5' region of hTERT in different cell lines and is therefore involved in the partial repression of hTERT transcription in methylated tumor cells. In contrast, we have shown that in normal and neoplastic B cells, hTERT regulation is methylation-independent. The PAX5 factor has been shown to bind to the hTERT 5'region downstream of the ATG translational start site. Ectopic expression of PAX5 in telomerase-negative cells or repression of PAX5 expression in B lymphoma cells respectively activated and repressed hTERT transcription. Thus, PAX5 is strongly implicated in hTERT expression activation in telomerase-positive B cells. These results reveal differences between the hTERT methylation patterns in telomerase-positive carcinoma cells and telomerase-positive normal B cells. The potential of hTERT methylation as a cancer biomarker was evaluated and applied to the detection of metastasis. We have shown that hTERT methylation correlates with the cytological diagnosis in cerebrospinal fluids. Our results suggest a model of hTERT gene regulation, which helps us to better understand how hTERT transcription is regulated by CTCF in methylation-dependant and independent mechanisms. Our data also indicate that hTERT methylation is a promising new cancer biomarker.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The complexity of mammalian genome organization demands a complex interplay of DNA and proteins to orchestrate proper gene regulation. CTCF, a highly conserved, ubiquitously expressed protein has been postulated as a primary organizer of genome architecture because of its roles in transcriptional activation/repression, insulation and imprinting. Diverse regulatory functions are exerted through genome wide binding via a central eleven zinc finger DNA binding domain and an array of diverse protein-protein interactions through N- and C- terminal domains. CTCFL has been identified as a paralog of CTCF expressed only in spermatogenic cells of the testis. CTCF and CTCFL have a highly homologous DNA-binding domain, while the flanking amino acid sequences exhibit no significant similarity. Genome- wide mapping of CTCF binding sites has been carried out in many cell types, but no data exist for CTCFL apart from a few identified loci. The lack of high quality antibodies prompted us to generate an endogenously flag-tagged CTCFL mouse model using BAC recombination. IHC staining using anti-flag antibodies confirmed CTCFL localization to type Β spermatogonia and preleptotene spermatocytes and a mutually exclusive pattern of expression with CTCF. ChIP followed by high-throughput sequencing identified 10,382 binding sites showing 70% overlap but representing only 20% of CTCF sites. Consensus sequence analysis identified a significantly longer binding motif with prominently less ambiguity of base calling at every position. The significant difference between CTCF and CTCFL genomic binding patterns proposes that their binding to DNA is differentially regulated. Analysis of CTCFL binding to methylated regions on a genome wide scale identified approximately 1,000 loci. Methylation-independent binding of CTCFL might be at least one of the mechanisms that ensures distinct binding patterns of CTCF and CTCFL since CTCF binding is methylation- sensitive. Co-localization of CTCF with cohesin has been well established and analysis of CTCFL and SMC3 overlap identified around 3,300 binding sites from which two related but distinct consensus sequence motifs were derived. Because virtually all data for cohesin binding originate from mitotically proliferating cells, the anticipated overlap is expected to be considerably higher in meiotic cells. Meiosis-specific cohesin subunit Rec8 is specific for spermatocytes and 6 out of the 12 identified binding sites are also bound by CTCFL. In conclusion, this was the first genome-wide mapping of CTCFL binding sites in spermatocytes, the only cell type where CTCF is not expressed. CTCFL has a unique binding site repertoire distinct from CTCF, binds to methylated sequences and shows a significant overlap with cohesin binding sites. Future efforts will be oriented towards deciphering the role CTCFL plays in conversion of chromatin structure and function from mitotic to meiotic chromosomes. - La complexité de l'organisation du génome des mammifères exige une interaction particulière entre ADN et protéines pour orchestrer une régulation appropriée de l'expression des gènes. CTCFL, une protéine ubiquitaire très conservée, serait le principal organisateur de l'architecture du génome de par son rôle dans l'activation / la répression de la transcription, la protection et la localisation des gènes. Diverses régulations sont opérées, d'une part au travers d'interactions à différents endroits du génome par le biais d'un domaine protéique central de liaison à l'ADN à onze doigts de zinc, et d'autre part par des interactions protéine-protéine variées au niveau de leur domaine N- et C-terminal. CTCFL a été identifié comme un paralogue de CTCF exprimé uniquement dans les cellules spermatiques du testicule. CTCFL et CTCF ont un domaine de liaison à l'ADN très homologue, tandis que les séquences d'acides aminés situées de part et d'autre de ce domaine ne présentent aucune similitude. Une cartographie générale des sites de liaison au CTCF a été réalisée pour de nombreux types cellulaires, mais il n'existe aucune donnée pour CTCFL à l'exception de l'identification de quelques loci. L'absence d'anticorps de bonne qualité nous a conduit à générer un modèle murin portant un CTCFL endogène taggué grâce à un procédé de recombinaison BAC. Une coloration IHC à l'aide d'anticorps anti-FLAG a confirmé la présence de CTCFL au niveau des spermatogonies de type Β et des spermatocytes au stade préleptotène, et une distribution mutuellement exclusive avec CTCF. Une méthode de Chromatine Immunoprecipitation (ChIP) suivie d'un séquençage à haut débit a permis d'identifier 10.382 sites de liaison montrant 70% d'homologie mais ne représentant que 20% des sites CTCF. L'analyse de la séquence consensus révèle un motif de fixation à l'ADN nettement plus long et qui comporte bien moins de bases aléatoires à chaque position nucléotidique. La différence significative entre les séquences génomiques des sites de liaison au CTCF et CTCFL suggère que leur fixation à l'ADN est régulée différemment. Appliquée à l'échelle du génome, l'étude de l'interaction de CTCFL avec des régions méthylées de l'ADN a permis d'identifier environ 1.000 loci. Contrairement à CTCFL, la liaison de CTCF dépend de l'état de méthylation de l'ADN ; cette modification épigénétique constitue donc au moins un des mécanismes de régulation expliquant une localisation de CTCF et CTCFL à des sites distincts du génome. La co- localisation de CTCF avec la cohésine étant établie, l'analyse de la superposition des séquences de CTCFL avec la sous-unité SMC3 identifie environ 3.300 sites de liaison parmi lesquels deux mêmes motifs consensus distincts par leur séquence sont mis en évidence. La presque quasi-totalité des données sur la cohésine ayant été établie à partir de cellules en prolifération mitotique, il est probable que la similitude au sein des séquences consensus soit encore plus grande dans le cas des cellules en méiose. La sous-unité Rec8 de la cohésine propre à l'état de méiose est spécifiquement exprimée dans les spermatocytes. Or 6 des 12 sites de liaison identifiés sont également utilisés par CTCFL. Pour conclure, ce travail constitue la première cartographie à l'échelle du génome des sites de liaison de CTCFL dans les spermatocytes, seul type cellulaire où CTCFL n'est pas exprimé. CTCFL possède un répertoire unique de sites de fixation à l'ADN distinct de CTCF, se lie à des séquences méthylées et présente un nombre important de sites de liaison communs avec la cohésine. Les perspectives futures sont d'élucider le rôle de CTCFL dans le remodelage de la structure de la chromatine et de définir sa fonction dans le processus de méiose.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Telomerase activity, not detectable in somatic cells but frequently activated during carcinogenesis, confers immortality to tumors. Mechanisms governing expression of the catalytic subunit hTERT, the limiting factor for telomerase activity, still remain unclear. We previously proposed a model in which the binding of the transcription factor CTCF to the two first exons of hTERT results in transcriptional inhibition in normal cells. This inhibition is abrogated, however, by methylation of CTCF binding sites in 85% of tumors. Here, we showed that hTERT was unmethylated in testicular and ovarian tumors and in derivative cell lines. We demonstrated that CTCF and its paralogue, BORIS/CTCFL, were both present in the nucleus of the same cancer cells and bound to the first exon of hTERT in vivo. Moreover, exogenous BORIS expression in normal BORIS-negative cells was sufficient to activate hTERT transcription with an increasing number of cell passages. Thus, expression of BORIS was sufficient to allow hTERT transcription in normal cells and to counteract the inhibitory effect of CTCF in testicular and ovarian tumor cells. These results define an important contribution of BORIS to immortalization during tumorigenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Le cancer est défini comme la croissance incontrôlée des cellules dans le corps. Il est responsable de 20 % des décès en Europe. Plusieurs expériences montrent que les tumeurs sont issues et se développent grâce à un petit nombre de cellules, que l'on appelle cellules souches cancéreuses (CSC). Ces CSC sont également responsables de l'apparition de métastases et de la résistance aux médicaments anticancéreux. De ce fait, l'identification des gènes qui contribuent aux propriétés de ces CSC (comme la survie des tumeurs, les métastases et la résistance aux médicaments) est nécessaire pour mieux comprendre la biologie des cancers et d'améliorer la qualité des soins des patients avec un cancer. A ce jour, de nombreux marqueurs ont été proposés ainsi que de nouvelles thérapies ciblées contre les CSC. Toutefois, et malgré les énormes efforts de la recherche dans ce domaine, la quasi-totalité des marqueurs de CSC connus à ce jour sont aussi exprimés dans les cellules saines. Ce projet de recherche visait à trouver un nouveau candidat spécifique des CSC. Le gène BORIS (pour Brother of Regulator of Imprinted Sites), nommé aussi CTCFL (CTCF-like), semble avoir certaines caractéristiques de CSC et pourrait donc devenir une cible prometteuse pour le traitement du cancer. BORIS/CTCFL est une protéine nucléaire qui se lie à l'ADN, qui est exprimée dans les tissus normaux uniquement dans les cellules germinales et qui est réactivée dans un grand nombre de tumeurs. BORIS est impliqué dans la reprogrammation épigénétique au cours du développement et dans la tumorigenèse. En outre, des études récentes ont montré une association entre l'expression de BORIS et un mauvais pronostic chez des patients atteints de différents types de cancers. Nous avons développé une nouvelle technologie basée sur les Molecular Beacon pour cibler l'ARNm de BORIS et cela dans les cellules vivantes. Grâce à ce système expérimental, nous avons montré que seule une toute petite sous-population (0,02 à 5%) de cellules tumorales exprimait fortement BORIS. Les cellules exprimant BORIS ont pu être isolées et elles présentaient les caractéristiques de CSC, telles qu'une forte expression de hTERT et des gènes spécifiques des cellules souches (NANOG, SOX2 et OCT4). En outre, une expression élevée de BORIS a été mise en évidence dans des populations enrichies en CSC ('side population' et sphères). Ces résultats suggèrent que BORIS pourrait devenir un nouveau et important marqueur de CSC. Dans des études fonctionnelles sur des cellules de cancer du côlon et du sein, nous avons montré que le blocage de l'expression de BORIS altère largement la capacité de ces cellules à former des sphères, démontrant ainsi un rôle essentiel de BORIS dans l'auto- renouvellement des tumeurs. Nos expériences montrent aussi que BORIS est un facteur important qui régule l'expression de gènes jouant un rôle clé dans le développement et la progression tumorale, tels le gène hTERT et ceux impliqués dans les cellules souches, les CSC et la transition épithélio-mésenchymateuse (EMT). BORIS pourrait affecter la régulation de la transcription de ces gènes par des modifications épigénétiques et de manière différente en fonction du type cellulaire. En résumé, nos résultats fournissent la preuve que BORIS peut être classé comme un gène marqueur de cellules souches cancéreuse et révèlent un nouveau mécanisme dans lequel BORIS jouerait un rôle important dans la carcinogénèse. Cette étude ouvre de nouvelles voies pour mieux comprendre la biologie de la progression tumorale et offre la possibilité de développement de nouvelles thérapies anti-tumorales et anti-CSC avec BORIS comme molécule cible. - Cancer is defined as the uncontrolled growth of cells in the body. It causes 20% of deaths in the European region. Current evidences suggest that tumors originate and are maintained thanks to a small subset of cells, named cancer stems cells (CSCs). These CSCs are also responsible for the appearance of metastasis and therapeutic resistance. Consequently, the identification of genes that contribute to the CSC properties (tumor survival, metastasis and therapeutic resistance) is necessary to better understand the biology of malignant diseases and to improve care management. To date, numerous markers have been proposed to use as new CSC- targeted therapies. Despite the enormous efforts in research, almost all of the known CSCs markers are also expressed in normal cells. This project aimed to find a new CSC-specific candidate. BORIS (Brother of Regulator of Imprinted Sites) or CTCFL (CTCF-like) is a DNA binding protein involves in epigenetic reprogramming in normal development and in tumorigenesis. Recent studies have shown an association of BORIS expression with a poor prognosis in different types of cancer patients. Therefore, BORIS seems to have the same characteristics of CSCs markers and it could be a promising target for cancer therapy. BORIS is normally expressed only in germinal cells and it is re-expressed in a wide variety of tumors. We developed a new molecular beacon-based technology to target BORIS mRNA expressing cells. Using this system, we showed that the BORIS expressing cells are only a small subpopulation (0.02-5%) of tumor cells. The isolated BORIS expressing cells exhibited the characteristics of CSCs, with high expression of hTERT and stem cell genes (NANOG, SOX2 and OCT4). Furthermore, high BORIS expression was observed in the CSC-enriched populations (side population and spheres). These results suggest that BORIS might be a novel and powerful CSCs marker. In functional studies, we observed that BORIS knockdown significantly impairs the capacity to form spheres in colon and breast cancer cells, thus demonstrating a critical role of BORIS in the self-renewal of tumors. The results showed in the functional analysis indicate that BORIS is an important factor that regulates the expression of key-target genes for tumor development and progression, such as hTERT, stem cells, CSCs markers and EMT (epithelial mesenchymal transition)-related marker genes. BORIS could affect the transcriptional regulation of these genes by epigenetic modification and in a cell type dependent manner. In summary, our results support the evidence that BORIS can be classified as a cancer stem cell marker gene and reveal a novel mechanism in which BORIS would play a critical role in tumorigenesis. This study opens new prospective to understand the biology of tumor development and provides opportunities for potential anti-tumor drugs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract en FrançaisCTCFL a d'abord été identifié comme un paralogue de la protéine ubiquitaire CTCF en raison de sa forte homologie entre leurs onze « zinc fingers », un domaine de liaison à l'ADN. Parmi ses nombreux rôles, la liaison des zinc fingers de CTCF à la région de contrôle de l'empreinte (ICR) maternelle non-méthylée Igf2/H19, contrôle l'expression empreinte (monoallélique) de H19 et IGF2 dans les cellules somatiques. La méthylation de l'ICR Igf2/H19 paternelle est nécessaire à l'expression empreinte de ces deux gènes. Bien que le mécanisme par lequel l'ICR est méthylé soit mal compris, il est connu que l'établissement de la méthylation se produit pendant le développement des cellules germinales mâles et que les ADN méthyltransférases de novo DNMT3A et DNMT3L sont essentiels. Par conséquent, CTCFL fournit un bon candidat pour un rôle dans la méthylation de l'ICR paternelle Igf2/H19 en raison de son expression restreinte à certains types de cellules où la méthylation de l'ICR a lieu (spermatogonies et spermatocytes) ainsi qu'en raison sa capacité à lier les ICR lgf2/HÎ9 dans ces cellules. Les premiers travaux expérimentaux de cette thèse portent sur le rôle possible des mutations de CTCFL chez les patients atteints du syndrome de Silver-Russell (SRS), où une diminution de la méthylation de l'ICR IGF2/H19 a été observée chez 60% d'entre eux. Admettant que CTCFL pourrait être muté chez ces patients, j'ai examiné les mutations possibles de CTCFL chez 35 d'entre eux par séquençage de l'ADN et analyse du nombre de copies d'exons. N'ayant trouvé aucune mutation chez ces patients, cela suggère que les mutations de CTCFL ne sont pas associées au SRS. Les travaux expérimentaux suivants ont porté sur les modifications post-traductionnelles de CTCFL par la protéine SU MO « small ubiquitin-like modifier » (SUMO). La modification de protéines par SU MO change les interactions avec d'autres molécules (ADN ou protéines). Comme CTCFL régule sans doute l'expression d'un certain nombre de gènes dans le cancer et que plusieurs facteurs de transcription sont régulés par SUMO, j'ai mené des expériences pour déterminer si CTCFL est sumoylé. En effet, j'ai observé que CTCFL est sumoylated in vitro et in vivo et j'ai déterminé les deux résidus d'attachement de SUMO aux lysines 181 et 645. Utilisant les mutants de CTCFL K181R et K645R ne pouvant pas être sumoylated, j'ai évalué les conséquences fonctionnelles de la modification par SUMO. Je n'ai trouvé aucun changement significatif dans la localisation subcellulaire, la demi-vie ou la liaison à l'ADN, mais ai constaté que la sumoylation module à la fois {'activation CTCFL-dépendante et la répression de l'expression génique. Il s'agit de la première modification post-traductionnelle décrite pour CTCFL et les conséquences possibles de cette modification sont discutées pour le cancer et les testicules normaux. Avec cette thèse, j'espère avoir ajouté des résultats importants à l'étude de CTCFL et donné quelques idées pour de futures recherches.AbstractJeremiah Bernier-Latmani, Institute of Pathology, University of Lausanne, CHUVCTCFL was first identified as a paralog of the ubiquitous protein CTCF because of high homology between their respective eleven zinc fingers, a DNA binding domain. Among its many roles, CTCF zinc finger-mediated binding to the unmethylated maternal Igf2/H19 imprinting control region (ICR), controls the imprinted (monoallelic) expression of Igf2 and H19 in somatic cells. Methylation of the paternal Igf2/H19 ICR is necessary for the imprinted expression of the two genes. Although the mechanism by which the ICR is methylated is incompletely understood, it is known that establishment of methylation occurs during male germ cell development and the de novo DNA methyltransferases DNMT3A and DNMT3L are essential. Therefore, CTCFL provided a good candidate to play a role in methylation of the paternal Igf2/H19 ICR because of its restricted expression to cell types where ICR methylation takes place (spermatogonia and spermatocytes) and its ability to bind the Igf2/H19 ICR in these cells. The first experimental work of this thesis investigated the possible role of CTCFL mutations in Silver-Russell syndrome (SRS) patients, where it has been observed that 60% of the patients have reduced methylation of the IGF2/HÎ9 ICR. Reasoning that CTCFL could be mutated in these patients, I screened 35 patients for mutations in CTCFL by DNA sequencing and exon copy number analysis, I did not find any mutations in these patients suggesting that mutations of CTCFL are not associated with SRS. The next experimental work of my thesis focused on posttranslational modification of CTCFL by small ubiquitin-like modifier (SUMO) protein. SUMO modification of proteins changes the interactions with other molecules (DNA or protein). As CTCFL arguably regulates the expression of a number of genes in cancer and many transcription factors are regulated by SUMO, I conducted experiments to assess whether CTCFL is sumoylated. I found that CTCFL is sumoylated in vitro and in vivo and determined the two residues of SUMO attachment to be lysines 181 and 645. Using K181R, K645R mutated CTCFL- which cannot be detected to be sumoylated-1 assessed the functional consequences of SUMO modification. I found no significant changes in subcellular localization, half-life or DNA binding, but found that sumoylation modulates both CTCFL-dependent activation and repression of gene expression. This is the first posttranslational modification described for CTCFL and possible consequences of this modification are discussed in both cancer and normal testis. With this thesis, I hope I have added important findings to the study of CTCFL and provide some ideas for future research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Silver-Russell syndrome (SRS) is a genetically and clinically heterogeneous disease. Although no protein coding gene defects have been reported in SRS patients, approximately 50% of SRS patients carry epimutations (hypomethylation) at the IGF2/H19 imprinting control region 1 (ICR1). Proper methylation at ICR1 is crucial for the imprinted expression of IGF2, a fetal growth factor. CTCFL, a testis-specific protein, has recently been proposed to play a role in the establishment of DNA methylation at the murine equivalent of ICR1. A screen was undertaken to assess whether CTCFL is mutated in SRS patients with hypomethylation, to explore a link between the observed epimutations and a genetic cause of the disease. METHODOLOGY/PRINCIPAL FINDINGS: DNA was obtained from 36 SRS patients with hypomethylation at ICR1. All CTCFL coding exons were sequenced and analyzed for duplications/deletions using both multiplex ligation-dependent probe amplification, with a custom CTCFL probe set, and genomic qPCR. Novel SNP alleles were analyzed for potential differential splicing in vitro utilizing a splicing assay. Neither mutations of CTCFL nor duplications/deletions were observed. Five novel SNPs were identified and have been submitted to dbSNP. In silico splice prediction suggested one novel SNP, IVS2-66A>C, activated a cryptic splice site, resulting in aberrant splicing and premature termination. In vitro splicing assays did not confirm predicted aberrant splicing. CONCLUSIONS/SIGNIFICANCE: As no mutations were detected at CTCFL in the patients examined, we conclude that genetic alterations of CTCFL are not responsible for the SRS hypomethylation. We suggest that analysis of other genes involved in the establishment of DNA methylation at imprinted genes, such as DNMT3A and DNMT3L, may provide insight into the genetic cause of hypomethylation in SRS patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gene transfer-based therapeutic approaches have greatly benefited from the ability of some viral vectors to efficiently integrate within the cell genome and ensure persistent transmission of newly acquired transgenes to the target cell progeny. However, integration of provirus has been associated with epigenetic repercussions that may influence the expression of both the transgene and cellular genes close to vector integration loci. The exploitation of genetic insulator elements may overcome both issues through their ability to act as barriers that limit transgene silencing and/or as enhancer-blockers preventing the activation of endogenous genes by the vector enhancer. We established quantitative plasmid-based assay systems to screen enhancer-blocker and barrier genetic elements. Short synthetic insulators that bind to nuclear factor-I protein family transcription factors were identified to exert both enhancer-blocker and barrier functions, and were compared to binding sites for the insulator protein CTCF (CCCTC-binding factor). Gamma-retroviral vectors enclosing these insulator elements were produced at titers similar to their non-insulated counterparts and proved to be less genotoxic in an in vitro immortalization assay, yielding lower activation of Evi1 oncogene expression and reduced clonal expansion of bone marrow cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Telomerase is an RNA-dependent DNA polymerase that synthesizes telomeric DNA. Its activity is not detectable in most somatic cells but it is reactivated during tumorigenesis. In most cancers, the combination of hTERT hypermethylation and hypomethylation of a short promoter region is permissive for low-level hTERT transcription. Activated and malignant lymphocytes express high telomerase activity, through a mechanism that seems methylation-independent. The aim of this study was to determine which mechanism is involved in the enhanced expression of hTERT in lymphoid cells. Our data confirm that in B cells, some T cell lymphomas and non-neoplastic lymph nodes, the hTERT promoter is unmethylated. Binding sites for the B cell-specific transcription factor PAX5 were identified downstream of the ATG translational start site through EMSA and ChIP experiments. ChIP assays indicated that the transcriptional activation of hTERT by PAX5 does not involve repression of CTCF binding. In a B cell lymphoma cell line, siRNA-induced knockdown of PAX5 expression repressed hTERT transcription. Moreover, ectopic expression of PAX5 in a telomerase-negative normal fibroblast cell line was found to be sufficient to activate hTERT expression. These data show that activation of hTERT in telomerase-positive B cells is due to a methylation-independent mechanism in which PAX5 plays an important role.