953 resultados para CRYSTALLINE SIO2


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ionoluminescence (IL) has been used in this work as a sensitive tool to probe the microscopic electronic processes and structural changes produced on quartz by the irradiation with swift heavy ions. The IL yields have been measured as a function of irradiation fluence and electronic stopping power. The results are consistent with the assignment of the 2.7 eV (460 nm) band to the recombination of self-trapped excitons at the damaged regions in the irradiated material. Moreover, it was possible to determine the threshold for amorphization by a single ion impact, as 1:7 keV/nm, which agrees well with the results of previous studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this paper is to report the sensitization of the TL peak appearing at 270 degrees C in the glow curve of natural quartz by using the combined effect of heat-treatments and irradiation with high gamma doses. For this, thirty discs with 6 x 1 mm(2) were prepared from plates parallell to a rhombolledral crystal face. The specimens were separated into four lots according to its TL read out between 160 and 320 degrees C. One lot was submitted to gamma doses of Co-60 radiation starting at 2 kGy and going up until a cumulative dose of 25 kGy. The other three lots were initially heal-treated at 500, 800 and 1000 degrees C and then irradiated with a single dose of 25kGy. The TL response of each lot was determined as a function of test-doses ranging from 0.1 to 30 mGy. As a result, it was observed that heat-treatments themselves did not produce the strong peak at 270 degrees C that was observed after the administration of high gamma doses. This peak is associated with the optical absorption band appearing at 470 rim which is due to the formation of [AlO4]degrees acting as electron-hole recombination centers. The formation of the 270 degrees C peak was preliminary analyzed in relation to aluminum- and oxygen-vacancy-related centers found in crystalline quartz. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thermoluminescence (TL) peak in natural sodalite near 230 degrees C which appears only after submitted to thermal treatments and to gamma irradiation has been studied in parallel with electron paramagnetic resonance (EPR) spectrum appearing under the same procedure This study revealed a full correlation between the 230 degrees C TL peak and the eleven hyperfine lines from EPR spectrum In both case the centers disappear at the same temperature and are restored after gamma irradiation A complete model for the 230 C TL peak is presented and discussed In addition to the correlation and TL model specific characteristics of the TL peaks are described (C) 2010 Elsevier B V All rights reserved

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Samples of natural sodalite, Na(8)Al(6)Si(6)O(24)Cl(2), submitted to gamma irradiation and to thermal treatments, have been investigated using the thermoluminescence (TL) and electron paramagnetic resonance (EPR) techniques. Both, natural and heat-treated samples at 500A degrees C in air for 30 min, present an EPR signal around g = 2.01132 attributed to oxygen hole centers. The EPR spectra of irradiated samples show an intense line at g = 2.0008 superimposed by a hyperfine multiplet of 11 lines due to an O(-) ion in an intermediate position with respect to two adjacent Al nuclei. In the TL measurements, the samples were annealed at 500A degrees C for 30 min and then irradiated with gamma doses varying from 0.001 to 20 kGy. All the samples have shown TL peaks at 110, 230, 270, 365, and 445A degrees C. A correlation between the EPR g = 2.01132 line and the 365A degrees C TL peak was observed. A TL model is proposed in which a Na(+) ion acts as a charge compensator when an Al(3+) ion replaces a Si(4+) lattice ion. The gamma ray destruction of the Al-Na complex provides an electron trapped at the Na and a hole trapped at a non-bridging oxygen ion adjacent to the Al(3+) ion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The kinetics of amorphization in crystalline SiO2 (α-quartz) under irradiation with swift heavy ions (O+1 at 4 MeV, O+4 at 13 MeV, F+2 at 5 MeV, F+4 at 15 MeV, Cl+3 at 10 MeV, Cl+4 at 20 MeV, Br+5 at 15 and 25 MeV and Br+8 at 40 MeV) has been analyzed in this work with an Avrami-type law and also with a recently developed cumulative approach (track-overlap model). This latter model assumes a track morphology consisting of an amorphous core (area σ) and a surrounding defective halo (area h), both being axially symmetric. The parameters of the two approaches which provide the best fit to the experimental data have been obtained as a function of the electronic stopping power Se. The extrapolation of the σ(Se) dependence yields a threshold value for amorphization, Sth ≈ 2.1 keV/nm; a second threshold is also observed around 4.1 keV/nm. We believe that this double-threshold effect could be related to the appearance of discontinuous tracks in the region between 2.1 and 4.1 keV/nm. For stopping power values around or below the lower threshold, where the ratio h/σ is large, the track-overlap model provides a much better fit than the Avrami function. Therefore, the data show that a right modeling of the amorphization kinetics needs to take into account the contribution of the defective track halo. Finally, a short comparative discussion with the kinetic laws obtained for elastic collision damage is given.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Outline: • Motivation, aim • Complement waveguide data on silica • Optical data in quartz • Detailed analysis, i.e. both fluence kinetics and resolution • Efficiency of irradiation and analysis, samples, time... • Experimental set-up description • Reflectance procedure • Options: light source (lasers, white light..), detectors, configurations • Results and discussion • Comparative of amorphous and crystalline phases

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the details of electronic transport related to the atomistic structure of silicon quantum dots embedded in a silicon dioxide matrix using ab initio calculations of the density of states. Several structural and composition features of quantum dots (QDs), such as diameter and amorphization level, are studied and correlated with transport under transfer Hamiltonian formalism. The current is strongly dependent on the QD density of states and on the conduction gap, both dependent on the dot diameter. In particular, as size increases, the available states inside the QD increase, while the QD band gap decreases due to relaxation of quantum confinement. Both effects contribute to increasing the current with the dot size. Besides, valence band offset between the band edges of the QD and the silica, and conduction band offset in a minor grade, increases with the QD diameter up to the theoretical value corresponding to planar heterostructures, thus decreasing the tunneling transmission probability and hence the total current. We discuss the influence of these parameters on electron and hole transport, evidencing a correlation between the electron (hole) barrier value and the electron (hole) current, and obtaining a general enhancement of the electron (hole) transport for larger (smaller) QD. Finally, we show that crystalline and amorphous structures exhibit enhanced probability of hole and electron current, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SiO2/TiO2 nanostructured composites with three different ratios of Si:Ti were prepared using the sol-gel method. These materials were characterized using energy dispersive X-ray fluorescence, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, photoluminescence, Raman with Fourier transform infrared spectroscopy, and the specific surface area. The band gaps of materials were determined by diffuse reflectance spectra, and the values of 3.20 ± 0.01, 2.92 ± 0.02, and 2.85 ± 0.01 eV were obtained as a result of the proportional increases in the amount of Ti within the composite. The materials exhibit only the anatase (TiO2) crystalline phase and have crystalline domains ranging from 4 to 5 nm. The photodegradation process of methylene blue, royal blue GRL, and golden yellow GL dyes were studied with respect to their contact times, pH variations within the solution, and the variations in the dye concentration of the solution in response to only sunlight. The maximum amount of time for the mineralization of dyes was 90 min. The kinetics of the process follows an apparently first order model, in which the obtained rate constant values were 5.72 × 10-2 min-1 for methylene blue, 6.44 × 10-2min-1 for royal blue GRL, and 1.07 × 10-1min-1 for golden yellow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FRANCAIS: L'observation d'une intense luminescence dans les super-réseaux de Si/SiO2 a ouvert de nouvelles avenues en recherche théorique des matériaux à base de silicium, pour des applications éventuelles en optoélectronique. Le silicium dans sa phase cristalline possède un gap indirect, le rendant ainsi moins intéressant vis-à-vis d'autres matériaux luminescents. Concevoir des matériaux luminescents à base de silicium ouvrira donc la voie sur de multiples applications. Ce travail fait état de trois contributions au domaine. Premièrement, différents modèles de super-réseaux de Si/SiO2 ont été conçus et étudiés à l'aide de calculs ab initio afin d'en évaluer les propriétés structurales, électroniques et optiques. Les deux premiers modèles dérivés des structures cristallines du silicium et du dioxyde de silicium ont permis de démontrer l'importance du rôle de l'interface Si/SiO2 sur les propriétés optiques. De nouveaux modèles structurellement relaxés ont alors été construits afin de mieux caractériser les interfaces et ainsi mieux évaluer la portée du confinement sur les propriétés optiques. Deuxièmement, un gap direct dans les modèles structurellement relaxés a été obtenu. Le calcul de l'absorption (par l'application de la règle d'or de Fermi) a permis de confirmer que les propriétés d'absorption (et d'émission) du silicium cristallin sont améliorées lorsque celui-ci est confiné par le SiO2. Un décalage vers le bleu avec accroissement du confinement a aussi été observé. Une étude détaillée du rôle des atomes sous-oxydés aux interfaces a de plus été menée. Ces atomes ont le double effet d'accroître légèrement le gap d'énergie et d'aplanir la structure électronique près du niveau de Fermi. Troisièmement, une application directe de la théorique des transitions de Slater, une approche issue de la théorie de la fonctionnelle de la densité pour des ensembles, a été déterminée pour le silicium cristallin puis comparée aux mesures d'absorption par rayons X. Une très bonne correspondance entre cette théorie et l'expérience est observée. Ces calculs ont été appliqués aux super-réseaux afin d'estimer et caractériser leurs propriétés électroniques dans la zone de confinement, dans les bandes de conduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High density, uniform GaN nanodot arrays with controllable size have been synthesized by using template-assisted selective growth. The GaN nanodots with average diameter 40nm, 80nm and 120nm were selectively grown by metalorganic chemical vapor deposition (MOCVD) on a nano-patterned SiO2/GaN template. The nanoporous SiO2 on GaN surface was created by inductively coupled plasma etching (ICP) using anodic aluminum oxide (AAO) template as a mask. This selective regrowth results in highly crystalline GaN nanodots confirmed by high resolution transmission electron microscopy. The narrow size distribution and uniform spatial position of the nanoscale dots offer potential advantages over self-assembled dots grown by the Stranski–Krastanow mode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The surface modification and crystallization process of BaO-B2O3-SiO2 glass compositions when exposed to CO2 laser irradiation was evaluated as a function of the laser power, irradiation time and surface condition. The glass surface was modified by the application of laser power exceeding 0.40 W and an irradiation time of more than 300 s. Micro-Raman and X-ray diffraction measurements revealed at high laser power the formation of beta-BaB2O4 (beta-BBO) crystalline phase. The crystallization of the irradiated region was enhanced when beta-BBO micrometer sized particles were dispersed on the surface of the glass sample. The intensity of the second harmonic generation observed in the crystallized region was found to depend mainly on the condition of the glassy surface prior to glass irradiation. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sol-gel method combined with a spin-coating technique has been successfully applied for the preparation of rare-earth doped silica:germania films used for the fabrication of erbium-doped waveguide amplifiers (EDWA), presenting several advantages over other methods for the preparation of thin films. As with other methods, the sol-gel route also shows some drawbacks, such as cracks related to the thickness of silica films and high hydrolysis rate of certain precursors such as germanium alkoxides. This article describes the preparation and optical characterization of erbium and ytterbium co-doped SiO2:GeO2 crack-free thick films prepared by the sol-gel route combined with a spin-coating technique using a chemically stable non-aqueous germanium oxide solution as an alternative precursor. The non-crystalline films obtained are planar waveguides exhibiting a single mode at 1,550 nm with an average thickness of 3.9 mu m presenting low percentages of porosity evaluated by the Lorentz-Lorenz Effective Medium Approximation, and low stress, according to the refractive index values measured in both transversal electric and magnetic polarizations. Weakly confining core layers (0.3% < Delta n < 0.75%) were obtained according to the refractive index difference between the core and buffer layers, suggesting that low-loss coupling EDWA may be obtained. The life time of the erbium I-4(13/2) metastable state was measured as a function of erbium concentration in different systems and based on these values it is possible to infer that the hydroxyl group was reduced and the formation of rare-earth clusters was avoided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aware of the difficulties in applying sol-gel technology on the preparation of thin films suitable for optical devices, the present paper reports on the preparation of crack-free erbium- and ytterbium-doped silica: hafnia thick films onto silica on silicon. The film was obtained using a dispersion of silica-hafnia nanoparticles into a binder solution, spin-coating, regular thermal process and rapid thermal process. The used methodology has allowed a significant increase of the film thickness. Based on the presented results good optical-quality films with the required thickness for a fiber matching single mode waveguide were obtained using the erbium- and ytterbium-activated sol-gel silica:hafnia system. The prepared film supports two transversal electric modes at 1550 nm and the difference between the transversal electric mode and the transversal magnetic mode is very small, indicating low birefringence. Photoluminescence of the I-4(13/2) -> I-4(15/2) transition of erbium ions shows a broad band centered at 1.53 mu m with full width at a half maximum of 28 nm. Up-conversion emission was carried out under different pump laser powers, and just one transition at red region was observed. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lead-Cadmium fluorosilicate stable glasses were prepared and the vitreous domain region determined in the composition diagram. Characteristic temperatures were obtained from thermal analysis and the structural studies performed illustrate clearly the role played by lead atoms in the glasses crystallization behavior and the glass-forming ability of cadmium atoms. The occurrence of either a cubic lead fluoride or a lead-cadmium fluoride solid solution in crystallizing samples was found to be dependent on Er3+ doping. The optically active ions were found to concentrate in the crystalline phase and in fact play the role of nucleating agent as suggested from X-ray diffraction and EXAFS measurements. (C) 2002 Elsevier B.V. Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)