990 resultados para COUNTABLY COMPACT
Resumo:
Under p = c, we prove that it is possible to endow the free abelian group of cardinality c with a group topology that makes its square countably compact. This answers a question posed by Madariaga-Garcia and Tomita and by Tkachenko. We also prove that there exists a Wallace semigroup (i.e., a countably compact both-sided cancellative topological semigroup which is not a topological group) whose square is countably compact. This answers a question posed by Grant.
Resumo:
Comfort and Remus [W.W. Comfort, D. Remus, Abelian torsion groups with a pseudo-compact group topology, Forum Math. 6 (3) (1994) 323-337] characterized algebraically the Abelian torsion groups that admit a pseudocompact group topology using the Ulm-Kaplansky invariants. We show, under a condition weaker than the Generalized Continuum Hypothesis, that an Abelian torsion group (of any cardinality) admits a pseudocompact group topology if and only if it admits a countably compact group topology. Dikranjan and Tkachenko [D. Dikranjan. M. Tkachenko, Algebraic structure of small countably compact Abelian groups, Forum Math. 15 (6) (2003) 811-837], and Dikranjan and Shakhmatov [D. Dikranjan. D. Shakhmatov, Forcing hereditarily separable compact-like group topologies on Abelian groups, Topology Appl. 151 (1-3) (2005) 2-54] showed this equivalence for groups of cardinality not greater than 2(c). We also show, from the existence of a selective ultrafilter, that there are countably compact groups without non-trivial convergent sequences of cardinality kappa(omega), for any infinite cardinal kappa. In particular, it is consistent that for every cardinal kappa there are countably compact groups without non-trivial convergent sequences whose weight lambda has countable cofinality and lambda > kappa. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We show that it is consistent with ZFC that the free Abelian group of cardinality c admits a topological group topology that makes it countably compact with a non-trivial convergent sequence. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We show that if p is a selective ultrafilter, then for each cardinal alpha <= omega(1), there exists a topological group G such that G(beta) is almost p-compact (in particular, countably compact), for beta < alpha, but G(alpha) is not countably compact. If in addition, we assume Martin's Axiom, then the result above holds for every alpha < c. (C) 2012 Elsevier By. All rights reserved.
Resumo:
∗ Supported by Research grants GAUK 190/96 and GAUK 1/1998
Resumo:
Hajnal and Juhasz proved that under CH there is a hereditarily separable, hereditarily normal topological group without non-trivial convergent sequences that is countably compact and not Lindelof. The example constructed is a topological subgroup H subset of 2(omega 1) that is an HFD with the following property (P) the projection of H onto every partial product 2(I) for I is an element of vertical bar omega(1)vertical bar(omega) is onto. Any such group has the necessary properties. We prove that if kappa is a cardinal of uncountable cofinality, then in the model obtained by forcing over a model of CH with the measure algebra on 2(kappa), there is an HFD topological group in 2(omega 1) which has property (P). Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
Resumo:
For a topological property P, we say that a space X is star Pif for every open cover Uof the space X there exists Y aS, X such that St(Y,U) = X and Y has P. We consider star countable and star Lindelof spaces establishing, among other things, that there exists first countable pseudocompact spaces which are not star Lindelof. We also describe some classes of spaces in which star countability is equivalent to countable extent and show that a star countable space with a dense sigma-compact subspace can have arbitrary extent. It is proved that for any omega (1)-monolithic compact space X, if C (p) (X)is star countable then it is Lindelof.
Resumo:
For a polish space M and a Banach space E let B1 (M, E) be the space of first Baire class functions from M to E, endowed with the pointwise weak topology. We study the compact subsets of B1 (M, E) and show that the fundamental results proved by Rosenthal, Bourgain, Fremlin, Talagrand and Godefroy, in case E = R, also hold true in the general case. For instance: a subset of B1 (M, E) is compact iff it is sequentially (resp. countably) compact, the convex hull of a compact bounded subset of B1 (M, E) is relatively compact, etc. We also show that our class includes Gulko compact. In the second part of the paper we examine under which conditions a bounded linear operator T : X ∗ → Y so that T |BX ∗ : (BX ∗ , w∗ ) → Y is a Baire-1 function, is a pointwise limit of a sequence (Tn ) of operators with T |BX ∗ : (BX ∗ , w∗ ) → (Y, · ) continuous for all n ∈ N. Our results in this case are connected with classical results of Choquet, Odell and Rosenthal.
Resumo:
∗ Supported by the Serbian Scientific Foundation, grant No 04M01
Resumo:
A temperature pause introduced in a simple single-step thermal decomposition of iron, with the presence of silver seeds formed in the same reaction mixture, gives rise to novel compact heterostructures: brick-like Ag@Fe3O4 core-shell nanoparticles. This novel method is relatively easy to implement, and could contribute to overcome the challenge of obtaining a multifunctional heteroparticle in which a noble metal is surrounded by magnetite. Structural analyses of the samples show 4 nm silver nanoparticles wrapped within compact cubic external structures of Fe oxide, with curious rectangular shape. The magnetic properties indicate a near superparamagnetic like behavior with a weak hysteresis at room temperature. The value of the anisotropy involved makes these particles candidates to potential applications in nanomedicine.
Resumo:
We use multiwavelength data (H I, FUV, NUV, R) to search for evidence of star formation in the intragroup medium of the Hickson Compact Group 100. We find that young star-forming regions are located in the intergalactic H I clouds of the compact group which extend to over 130 kpc away from the main galaxies. A tidal dwarf galaxy (TDG) candidate is located in the densest region of the H I tail, 61 kpc from the brightest group member and its age is estimated to be only 3.3 Myr. Fifteen other intragroup H II regions and TDG candidates are detected in the Galaxy Evolution Explorer (GALEX) FUV image and within a field 10' x 10' encompassing the H I tail. They have ages <200 Myr, H I masses of 10(9.2-10.4) M(circle dot), 0.001
Resumo:
Using the solutions of the gap equations of the magnetic-color-flavor-locked (MCFL) phase of paired quark matter in a magnetic field, and taking into consideration the separation between the longitudinal and transverse pressures due to the field-induced breaking of the spatial rotational symmetry, the equation of state of the MCFL phase is self-consistently determined. This result is then used to investigate the possibility of absolute stability, which turns out to require a field-dependent ""bag constant"" to hold. That is, only if the bag constant varies with the magnetic field, there exists a window in the magnetic field vs bag constant plane for absolute stability of strange matter. Implications for stellar models of magnetized (self-bound) strange stars and hybrid (MCFL core) stars are calculated and discussed.
Resumo:
Context. The formation of ultra-compact dwarf galaxies (UCDs) is believed to be driven by interaction, and UCDs are abundant in the cores of galaxy clusters, environments that mark the end-point of galaxy evolution. Nothing is known about the properties of UCDs in compact groups of galaxies, environments where most of galaxy evolution and interaction is believed to occur and where UCDs in an intermediate stage in their evolution may be expected. Aims. The main goal of this study is to detect and characterize, for the first time, the UCD population of compact groups of galaxies. For that, two nearby groups in different evolutionary stages, HCG22 and HCG90, were targeted. Methods. We selected about 40 UCD candidates from pre-existing photometry of both groups, and obtained spectra of these candidates using the VLT FORS2 instrument in MXU mode. Archival HST/ACS imaging was used to measure their structural parameters. Results. We detect 16 and 5 objects belonging to HCG22 and HCG90, respectively, covering the magnitude range -10.0 > M(R) > -11.5 mag. Their integrated colours are consistent with old ages covering a broad range in metallicities (metallicities confirmed by the spectroscopic measurements). Photometric mass estimates put 4 objects in HCG90 and 9 in HCG22 in the mass range of UCDs (> 2 x 10(6) M(circle dot)) for an assumed age of 12Gyr. These UCDs are on average 2-3 times larger than the typical size of Galactic GCs, covering a range of 2 less than or similar to r(h) less than or similar to 21 pc. The UCDs in HCG22 are more concentrated around the central galaxy than in HCG90, at the 99% confidence level. They cover a broad range in [alpha/Fe] abundances from sub-to super-solar. The spectra of 3 UCDs (2 in HCG22, 1 in HCG90) show tentative evidence of intermediate age stellar populations. The clearest example is the largest and most massive UCD (similar to 10(7) M(circle dot)) in our sample, which is detected in HCG22. Its properties are most consistent with a stripped dwarf galaxy nucleus. We calculate the specific frequency (S(N)) of UCDs for both groups, finding that HCG22 has about three times higher S(N) than HCG90. Conclusions. The ensemble properties of the detected UCDs supports two co-existing formation channels: a star cluster origin (low-luminosity, compact sizes, old ages, super-solar alpha/Fe), and an origin as tidally stripped dwarf nuclei (more extended and younger stellar populations). Our results imply that the UCDs detected in both groups do not, in their majority, originate from relatively recent galaxy interactions. Most of the detected UCDs have likely been brought into the group along with their host galaxies.
Resumo:
We obtained new Fabry-Perot data cubes and derived velocity fields, monochromatic, and velocity dispersion maps for 28 galaxies in the Hickson compact groups 37, 40, 47, 49, 54, 56, 68, 79, and 93. We also derived rotation curves for 9 of the studied galaxies, 6 of which are strongly asymmetric. Combining these new data with previously published 2D kinematic maps of compact group galaxies, we investigated the differences between the kinematic and morphological position angles for a sample of 46 galaxies. We find that one third of the unbarred compact group galaxies have position angle misalignments between the stellar and gaseous components. This and the asymmetric rotation curves are clear signatures of kinematic perturbations, probably because of interactions among compact group galaxies. A comparison between the B-band Tully-Fisher relation for compact group galaxies and for the GHASP field-galaxy sample shows that, despite the high fraction of compact group galaxies with asymmetric rotation curves, these lay on the TF relation defined by galaxies in less dense environments, although with more scatter. This agrees with previous results, but now confirmed for a larger sample of 41 galaxies. We confirm the tendency for compact group galaxies at the low-mass end of the Tully-Fisher relation (HCG 49b, 89d, 96c, 96d, and 100c) to have either a magnitude that is too bright for its mass (suggesting brightening by star formation) and/or a low maximum rotational velocity for its luminosity (suggesting tidal stripping). These galaxies are outside the Tully Fisher relation at the 1 sigma level, even when the minimum acceptable values of inclinations are used to compute their maximum velocities. Including such galaxies with nu < 100 km s(-1) in the determination of the zero point and slope of the compact group B-band Tully-Fisher relation would strongly change the fit, making it different from the relation for field galaxies, which has to be kept in mind when studying scaling relations of interacting galaxies, especially at high redshifts.
Resumo:
The exact composition of a specific class of compact stars, historically referred to as ""neutron stars,'' is still quite unknown. Possibilities ranging from hadronic to quark degrees of freedom, including self-bound versions of the latter, have been proposed. We specifically address the suitability of strange star models (including pairing interactions) in this work, in the light of new measurements available for four compact stars. The analysis shows that these data might be explained by such an exotic equation of state, actually selecting a small window in parameter space, but still new precise measurements and also further theoretical developments are needed to settle the subject.