924 resultados para CORRELATION CURVES
Resumo:
I present a new experimental method called Total Internal Reflection Fluorescence Cross-Correlation Spectroscopy (TIR-FCCS). It is a method that can probe hydrodynamic flows near solid surfaces, on length scales of tens of nanometres. Fluorescent tracers flowing with the liquid are excited by evanescent light, produced by epi-illumination through the periphery of a high NA oil-immersion objective. Due to the fast decay of the evanescent wave, fluorescence only occurs for tracers in the ~100 nm proximity of the surface, thus resulting in very high normal resolution. The time-resolved fluorescence intensity signals from two laterally shifted (in flow direction) observation volumes, created by two confocal pinholes are independently measured and recorded. The cross-correlation of these signals provides important information for the tracers’ motion and thus their flow velocity. Due to the high sensitivity of the method, fluorescent species with different size, down to single dye molecules can be used as tracers. The aim of my work was to build an experimental setup for TIR-FCCS and use it to experimentally measure the shear rate and slip length of water flowing on hydrophilic and hydrophobic surfaces. However, in order to extract these parameters from the measured correlation curves a quantitative data analysis is needed. This is not straightforward task due to the complexity of the problem, which makes the derivation of analytical expressions for the correlation functions needed to fit the experimental data, impossible. Therefore in order to process and interpret the experimental results I also describe a new numerical method of data analysis of the acquired auto- and cross-correlation curves – Brownian Dynamics techniques are used to produce simulated auto- and cross-correlation functions and to fit the corresponding experimental data. I show how to combine detailed and fairly realistic theoretical modelling of the phenomena with accurate measurements of the correlation functions, in order to establish a fully quantitative method to retrieve the flow properties from the experiments. An importance-sampling Monte Carlo procedure is employed in order to fit the experiments. This provides the optimum parameter values together with their statistical error bars. The approach is well suited for both modern desktop PC machines and massively parallel computers. The latter allows making the data analysis within short computing times. I applied this method to study flow of aqueous electrolyte solution near smooth hydrophilic and hydrophobic surfaces. Generally on hydrophilic surface slip is not expected, while on hydrophobic surface some slippage may exists. Our results show that on both hydrophilic and moderately hydrophobic (contact angle ~85°) surfaces the slip length is ~10-15nm or lower, and within the limitations of the experiments and the model, indistinguishable from zero.
Resumo:
Polymerbasierte Kolloide mit Groen im Nanometerbereich werden als aussichts- reiche Kandidaten fur die Verkapselung und den Transport von pharmazeutischen Wirkstoen angesehen. Daher ist es wichtig die physikalischen Prozesse, die die Bil- dung, Struktur und kinetische Stabilitat der polymerbasierten Kolloide beein ussen, besser zu verstehen. Allerdings ist die Untersuchung dieser Prozesse fur nanome- tergroe Objekte kompliziert und erfordert fortgeschrittene Techniken. In dieser Arbeit beschreibe ich Untersuchungen, bei denen Zwei-Farben-Fluoreszenzkreuz- korrelationsspektroskopie (DC FCCS) genutzt wurde, um Informationen uber die Wechselwirkung und den Austausch von dispergierten, nanometergroen Kolloiden zu bekommen. Zunachst habe ich den Prozess der Polymernanopartikelherstellung aus Emul- sionstropfen untersucht, welcher einen der am haugsten angewendeten Prozesse der Nanopartikelformulierung darstellt. Ich konnte zeigen, dass mit DC FCCS eindeutig und direkt Koaleszenz zwischen Emulsionstropfen gemessen werden kann. Dies ist von Interesse, da Koaleszenz als Hauptgrund fur die breite Groenverteilung der nalen Nanopartikel angesehen wird. Weiterhin habe ich den Austausch von Mizellen bildenden Molekulen zwischen amphiphilen Diblock Kopolymermizellen untersucht. Als Modellsystem diente ein Linear-Burste Block Kopolymer, welches Mizellen mit einer dichten und kurzen Korona bildet. Mit Hilfe von DC FCCS konnte der Austausch in verschiedenen Losungsmitteln und bei verschiedenen Temperaturen beobachtet werden. Ich habe herausgefunden, dass in Abhangigkeit der Qualitat des Losungsmittels die Zeit des Austausches um Groenordnungen verschoben werden kann, was eine weitreichende Einstellung der Austauschkinetik ermoglicht. Eine Eigenschaft die all diese Kolloide gemeinsam haben ist ihre Polydispersitat. Im letzten Teil meiner Arbeit habe ich am Beispiel von Polymeren als Modellsystem untersucht, welchen Eekt Polydispersitat und die Art der Fluoreszenzmarkierung auf FCS Experimente haben. Eine Anpassung des klassischen FCS Modells kann die FCS Korrelationskurven dieser Systeme beschreiben. Die Richtigkeit meines Ansatzes habe ich mit dem Vergleich zur Gel-Permeations-Chromatographie und Brownschen Molekulardynamiksimulationen bestatigt.
Resumo:
In a continuation of the authors' recent work, the ultimate tip resistance of a miniature cone using triaxial equipment was determined for samples of dry sand mixed with dry fly ash. The effect of (i) the proportion of fly ash, (ii) the relative density of samples, and (iii) the vertical overburden pressure was examined. It was noted that an addition of fly ash in sand for the same range of relative density leads to a significant reduction in the ultimate tip resistance of the cone (q(cu)). This occurs due to a decrease in the friction angle (phi) of the sample with an increase in the fly ash content for a given relative density. For phi greater than about 30 degrees, two widely used correlation curves from published literature, providing the relationships between q(cu) and phi for cohesionless soils, were found to provide satisfactory predictions, even for sand - fly ash mixtures. As was expected, the values of qcu increase continuously with an increase in the relative density of the soil mass and the vertical effective ( overburden) stress on the sample.
Resumo:
Para aumentar os volumes de extração de petróleo, resolver e prevenir problemas nas operações de produção são utilizados diversos produtos químicos, dentre os quais se destacam os inibidores de corrosão, que são utilizados em toda cadeia produtiva do petróleo visando proteger o sistema da deterioração por corrosão. Os sais de amônio quaternário são uma das classes de inibidores mais utilizadas pela indústria do petróleo devido a sua grande eficiência. Entretanto, sua solubilidade em água faz com que estejam presentes na água produzida representando um risco para contaminação ambiental, visto que possuem baixa biodegrabilidade e potencial de bioacumulação. Como se encontram misturados a outros produtos químicos e sob efeitos das variações do ambiente em que são aplicados, definir um método de análise confiável e viável para monitoramento em linha representa um desafio para os laboratórios de campos de produção. Neste trabalho, foi estudado o emprego da fluorescência de ultravioleta na quantificação de um inibidor de corrosão do tipo sal de amônio quaternário em água. Foram obtidos espectros de emissão do produto comercial em água, além do estudo de variáveis instrumentais e interferentes presentes na água produzida. A comparação com padrões de sal de amônio quaternário permitiu identificar como principal fluorófilo, um sal alquil-aril de amônio quaternário. Estudos de estabilidade revelaram que a adsorção do inibidor de corrosão nas superfícies dos frascos plásticos provoca a queda do sinal fluorescente e que a adição de isopropanol reduz este efeito de 40 para 24%. Foram obtidas curvas de calibração com a formulação comercial e com o cloreto de 2-metil-4-dodecil-benzil-trimetil amônio com uma boa correlação. Amostras sintéticas do inibidor foram determinadas com um erro relativo de 2,70 a 13,32%. O método de adição padrão foi avaliado usando uma amostra de água produzida, e os resultados não foram satisfatórios, devido à interferência, principalmente, de compostos orgânicos aromáticos presentes
Resumo:
Several gene regulatory network models containing concepts of directionality at the edges have been proposed. However, only a few reports have an interpretable definition of directionality. Here, differently from the standard causality concept defined by Pearl, we introduce the concept of contagion in order to infer directionality at the edges, i.e., asymmetries in gene expression dependences of regulatory networks. Moreover, we present a bootstrap algorithm in order to test the contagion concept. This technique was applied in simulated data and, also, in an actual large sample of biological data. Literature review has confirmed some genes identified by contagion as actually belonging to the TP53 pathway.
Resumo:
The use of computer programs to predict drug absorption in humans and to simulate dissolution profiles has become a valuable tool in the pharmaceutical area. The objective of this study was to use in silico methods through software GastroPlusTM and DDDPlusTM to simulate drug absorption curves and dissolution profiles, and to establish in vitro-in vivo correlations (IVIVCs). The work presented herein is divided into five chapters and includes the drugs ketoprofen, pyrimethamine, metronidazole, fluconazole, carvedilol and doxazosin. In Chapter 1, simulated plasma curves for ketoprofen matrix tablets are presented and IVIVC was established. The use of simulated intrinsic dissolution tests for pyrimethamine and metronidazole as a tool for biopharmaceutics classification is detailed in Chapter 2. In Chapter 3, simulation of plasma curves for fluconazole capsules with different dissolution profiles is demonstrated as a tool for biowaiver. IVIVC studies were also conducted for carvedilol immediate-release tablets from dissolution profiles in Chapter 4. Chapter 5 covers the application of simulated dissolution tests for development of doxazosin extended-release formulations. Simulation of plasma curves and IVIVC using the software GastroPlusTM as well as intrinsic dissolution tests and dissolution profiles using the software DDDPlusTM proved to be a tool of wide application in predicting biopharmaceutical characteristics of drugs and formulations, allowing the reduction of time and costs of experimental laboratory work.
Resumo:
Two different morphologies of nanotextured molybdenum oxide were deposited by thermal evaporation. By measuring their field emission (FE) properties, an enhancement factor was extracted. Subsequently, these films were coated with a thin layer of Pt to form Schottky contacts. The current-voltage (I-V) characteristics showed low magnitude reverse breakdown voltages, which we attributed to the localized electric field enhancement. An enhancement factor was obtained from the I-V curves. We will show that the enhancement factor extracted from the I-V curves is in good agreement with the enhancement factor extracted from the FE measurements.
Resumo:
Since Brutsaert and Neiber (1977), recession curves are widely used to analyse subsurface systems of river basins by expressing -dQ/dt as a function of Q, which typically take a power law form: -dQ/dt=kQ, where Q is the discharge at a basin outlet at time t. Traditionally recession flows are modelled by single reservoir models that assume a unique relationship between -dQ/dt and Q for a basin. However, recent observations indicate that -dQ/dt-Q relationship of a basin varies greatly across recession events, indicating the limitation of such models. In this study, the dynamic relationship between -dQ/dt and Q of a basin is investigated through the geomorphological recession flow model which models recession flows by considering the temporal evolution of its active drainage network (the part of the stream network of the basin draining water at time t). Two primary factors responsible for the dynamic relationship are identified: (i) degree of aquifer recharge (ii) spatial variation of rainfall. Degree of aquifer recharge, which is likely to be controlled by (effective) rainfall patterns, influences the power law coefficient, k. It is found that k has correlation with past average streamflow, which confirms the notion that dynamic -dQ/dt-Q relationship is caused by the degree of aquifer recharge. Spatial variation of rainfall is found to have control on both the exponent, , and the power law coefficient, k. It is noticed that that even with same and k, recession curves can be different, possibly due to their different (recession) peak values. This may also happen due to spatial variation of rainfall. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
Following the idea of Xing et al., we investigate a general method for constructing families of pseudorandom sequences with low correlation and large linear complexity from elliptic curves over finite fields in this correspondence. With the help of the tool of exponential sums on elliptic curves, we study their periods, linear complexities, linear complexity profiles, distributions of r-patterns, periodic correlation, partial period distributions, and aperiodic correlation in detail. The results show that they have nice randomness.
Resumo:
Three human malignancy cell lines were irradiated with Co-60 gamma-rays. Initial chromatid breaks were measured by using the chemically induced premature chromosome condensation technique. Survival curves of cells exposed to gamma rays was linear-quadratic while the efficiency of Calyculin A in inducing PCC of G(2) PCC was about five times more than G(1) PCC. A dose-dependent increase in radiation-induced chromatid/isochromatid breaks was observed in G(1) and G(2) phase PCC and a nearly positive linear correlation was found between cell survival and chromatin breaks. This study implies that low LET radiation-induced chromatid/isochromatid breaks can potentially be used to predict the radiosensitivity of tumor cells either in in vitro experimentation or in in vivo clinical radiotherapy.
Resumo:
We carry out the first multi-dimensional radiative transfer calculations to simultaneously compute synthetic spectra and light curves for models of supernovae driven by fast bipolar outflows. These allow us to make self-consistent predictions for the orientation dependence of both color evolution and spectral features. We compare models with different degrees of asphericity and metallicity and find significant observable consequences of both. In aspherical models, we find spectral and light curve features that vary systematically with observer orientation. In particular, we find that the early-phase light curves are brighter and bluer when viewed close to the polar axis but that the peak flux is highest for equatorial (off-axis) inclinations. Spectral line features also depend systematically on observer orientation, including the velocity of the Si II 6355 Å line. Consequently, our models predict a correlation between line velocity and color that could assist the identification of supernovae associated with off-axis jet-driven explosions. The amplitude and range of this correlation depends on the degree of asphericity, the metallicity, and the epoch of observation but we find that it is always present and acts in the same direction. © 2012. The American Astronomical Society. All rights reserved..
Resumo:
We present a sample of normal Type Ia supernovae (SNe Ia) from the Nearby Supernova Factory data set with spectrophotometry at sufficiently late phases to estimate the ejected mass using the bolometric light curve.Wemeasure Ni masses from the peak bolometric luminosity, then compare the luminosity in the Co-decay tail to the expected rate of radioactive energy release from ejecta of a given mass. We infer the ejected mass in a Bayesian context using a semi-analytic model of the ejecta, incorporating constraints from contemporary numerical models as priors on the density structure and distribution of Ni throughout the ejecta. We find a strong correlation between ejected mass and light-curve decline rate, and consequently Ni mass, with ejected masses in our data ranging from 0.9 to 1.4 M. Most fast-declining (SALT2 x <-1) normal SNe Ia have significantly sub-Chandrasekhar ejected masses in our fiducial analysis.
Resumo:
We present the Coordinated Synoptic Investigation of NGC 2264, a continuous 30 day multi-wavelength photometric monitoring campaign on more than 1000 young cluster members using 16 telescopes. The unprecedented combination of multi-wavelength, high-precision, high-cadence, and long-duration data opens a new window into the time domain behavior of young stellar objects. Here we provide an overview of the observations, focusing on results from Spitzer and CoRoT. The highlight of this work is detailed analysis of 162 classical T Tauri stars for which we can probe optical and mid-infrared flux variations to 1% amplitudes and sub-hour timescales. We present a morphological variability census and then use metrics of periodicity, stochasticity, and symmetry to statistically separate the light curves into seven distinct classes, which we suggest represent different physical processes and geometric effects. We provide distributions of the characteristic timescales and amplitudes and assess the fractional representation within each class. The largest category (>20%) are optical "dippers" with discrete fading events lasting ~1-5 days. The degree of correlation between the optical and infrared light curves is positive but weak; notably, the independently assigned optical and infrared morphology classes tend to be different for the same object. Assessment of flux variation behavior with respect to (circum)stellar properties reveals correlations of variability parameters with Hα emission and with effective temperature. Overall, our results point to multiple origins of young star variability, including circumstellar obscuration events, hot spots on the star and/or disk, accretion bursts, and rapid structural changes in the inner disk. Based on data from the Spitzer and CoRoT missions. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.
Resumo:
The thermoluminescence (TL) characteristics of quartz are highly dependent of its thermal history. Based on the enhancement of quartz luminescence occurred after heating, some authors proposed to use quartz TL to recover thermal events that affected quartz crystals. However, little is know about the influence of the temperature of quartz crystallization on its TL characteristics. In the present study, we evaluate the TL sensitivity and dose response curves of hydrothermal and metamorphic quartz with crystallization temperatures from 209 +/- 15 to 633 +/- 27 degrees C determined through fluid inclusion and mineral chemistry analysis. The studied crystals present a cooling thermal history, which allow the acquiring of their natural TL without influence of heating after crystallization. The TL curves of the studied samples present two main components formed by different peaks overlapped around 110 C and 200-400 degrees C. The TL sensitivity in the 200-400 degrees C region increases linearly with the temperature of quartz crystallization. No relationship was observed between temperatures of quartz crystallization and saturation doses (<100 Gy). The elevated TL sensitivity of the high temperature quartz is attributed to the control exerted by the temperature of crystallization on the substitution of Si(4+) by ions such as Al(3+) and Ti(4+), which produce defects responsible for luminescence phenomena. The linear relationship observed between TL in the 200-400 degrees C region and crystallization temperature has potential use as a quartz geothermometer. The relative abundance of quartz in the earth crust and the easiness to measure TL are advantageous in relation to geothermometry methods based on chemistry of other minerals. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We have considered a Bayesian approach for the nonlinear regression model by replacing the normal distribution on the error term by some skewed distributions, which account for both skewness and heavy tails or skewness alone. The type of data considered in this paper concerns repeated measurements taken in time on a set of individuals. Such multiple observations on the same individual generally produce serially correlated outcomes. Thus, additionally, our model does allow for a correlation between observations made from the same individual. We have illustrated the procedure using a data set to study the growth curves of a clinic measurement of a group of pregnant women from an obstetrics clinic in Santiago, Chile. Parameter estimation and prediction were carried out using appropriate posterior simulation schemes based in Markov Chain Monte Carlo methods. Besides the deviance information criterion (DIC) and the conditional predictive ordinate (CPO), we suggest the use of proper scoring rules based on the posterior predictive distribution for comparing models. For our data set, all these criteria chose the skew-t model as the best model for the errors. These DIC and CPO criteria are also validated, for the model proposed here, through a simulation study. As a conclusion of this study, the DIC criterion is not trustful for this kind of complex model.