992 resultados para CONFORMATIONAL TRANSITION
Resumo:
It is noteworthy to understand the details of interactions between antitumor drugs and DNA because the binding modes and affinities affect their antitumor activities. Here, The interaction of toluidine blue (TB), a potential antitumor drug for photodynamic therapy of tumor, with calf thymus DNA (ctDNA) was explored by UV-vis, fluorescence, circular dichroism (CD) spectroscopy, UV-rnelting method and surface-enhance Raman spectroscopy (SERS). The experimental results suggest that TB could bind to ctDNA via both electrostatic interaction and partial intercalation.
Resumo:
Recent studies have focused on the structural features of DNA-lipid assemblies. In this paper we take nile blue A (NBA) as a probe molecule to study the influence of the conformational transition of DNA induced by didodecyldimethylammonium bromide (DDAB) cationic vesicles to the interaction between DNA and the probe molecules. We find that upon binding to DNA, a secondary conformational transition of DNA induced by the cationic liposome from the native B-form to the C-form resulted in the change of binding modes of NBA to DNA and different complexes are formed between DNA, DDAB and NBA.
Resumo:
The conformational transition of DNA induced by the interaction between DNA and a cationic lipid vesicle, didodecyidimethylammonium bromide (DDAB), had been investigated by circular dichroism (CD) and UV spectroscopy methods. We used singular value decomposition least squares method (SVDLS) to analyze the experimental CD spectra. Although pH value influenced the conformation of DNA in solution, the results showed that upon binding to double helical DNA, positively charged liposomes induced a conformational transition of DNA molecules from the native B-form to more compact conformations. At the same time, no obvious conformational changes occurred at single-strand DNA (ssDNA). While the cationic lipid vesicles and double-strand DNA (dsDNA) were mixed at a high molar ratio of DDAB vesicles to dsDNA, the conformation of dsDNA transformed from the B-form to the C-form resulting in an increase in duplex stability (DeltaT(m) = 8 +/- 0.4 degreesC). An increasing in T-m was also observed while the cationic lipid vesicles interacted with ssDNA.
Resumo:
Electrochemically induced three conformational transitions of calf thymus DNA from B-10.4 to Z(10.2)-DNA and from B-10.2 to B-10.4 and to C-DNA in 10 mM phosphate buffer solution (pH 7.21) at glassy carbon electrode are found and studied by in situ circular dichroism (CD) thin layer spectroelectrochemistry with singular value decomposition least square (SVDLS) analysis. It indicates that the so-called B-10.2 form and the C-form of DNA may be composed of B-10.4 and left-A DNA and of B-10.4 and right-A DNA, respectively. The irreversible electrochemical reduction of adenine and cytosine groups in the DNA molecule is studied by UV-Vis spectroelectrochemistry. Some electrochemical parameters alphan = 0.17, E-0' = -0.70 V (vs. Ag/AgCl), and the standard heterogeneous electron transfer rate constant, k(0) = 1.8 x 10(-5) cm s(-1) are obtained by double logarithmic analysis and non-linear regression. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The irreversible conformational transition of bovine serum albumin (BSA) from alpha-helix to beta-sheet, induced by electric field near the electrode surface, was monitored by circular dichroism (CD) with a long optical path thin layer cell (LOPTLC).
Resumo:
The conformational transition of disulfides in bovine serum albumin (BSA) induced by electrochemical redox reaction of disulfides were monitored by in-situ circular dichroism (CD) spectroelectrochemistry, with a long optical path thin layer cell and analyzed by a singular value decomposition least square (SVDLS) method. Electrochemical reduction of disulfides drives the left-handed conformation of disulfides changed into the right-handed. At open circuit, eight of the 17 disulfides were of left-handed conformation. Four of the 17 disulfides took part in the electrochemical reduction with an EC mechanism. Only one-fourth of the reduced disulfides returned to left-handed conformation in the re-oxidation process. Some parameters of the electrochemical reduction process, i.e. the number of electrons transferred and electron transfer coefficient, n=8, alphan=0.15, apparent formal potential, E-1(0') = -0.65(+/-0.01) V, standard heterogeneous electron transfer rate constant, k(1)(0) = (2.84 +/- 0.14)x 10(-5) cm s(-1) and chemical reaction equilibrium constant, K-c=(5.13 +/- 0.12) x 10(-2), were also obtained by double logarithmic analysis based on the near-UV absorption spectra with applied potentials. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The conformational transition of horse heart cytochrome c induced by bromopyrogal red (BPR) in very low concentration has been firstly investigated by dynamic spectroelectrochemical technique, both at the BPR adsorbed platinum gauze electrode and at a bare platinum gauze electrode in a solution containing BPR. The effect of BPR on the structure of cytochrome c was studied by UV-visible and Fourier transform IR spectroscopy. The unfolded cytochrome c behaves simply as an electron transfer protein with a formal potential of -142 mV vs. a normal hydrogen electrode. The difference between the formal potentials of the native and unfolded cytochrome c is coupled to a difference in conformational energy of the two states of about 40 kJ mol(-1), which agrees well with the result reported. The stability and slow refolding of the unfolded cytochrome c are discussed.
Resumo:
Transactivator protein C of bacteriophage mu is essential for the transition from middle to late gene expression during the phage life cycle. The unusual, multistep activation of mom promoter (Pmom) by C protein involves activator-mediated promoter unwinding to recruit RNA polymerase and subsequent enhanced promoter clearance of the enzyme. To achieve this, C binds its site overlapping the -35 region of the mom promoter with a very high affinity, in Mg2+-dependent fashion. Mg2+-mediated conformational transition in C is necessary for its DNA binding and transactivation. We have determined the residues in C which coordinate Mg2+, to induce allosteric transition in the protein, required for the specific interaction with DNA. Residues E26 and D40 in the putative metal binding motif (E26X10D37X2D40) present toward the N-terminus of the protein are found to be important for Mg2+ ion binding. Mutations in these residues lead to altered Mg2+-induced conformation, compromised DNA binding, and reduced levels of transcription activation. Although Mg2+ is widely used in various DNA transaction reactions, this report provides the first insights on the importance of the metal ion-induced allosteric transitions in regulating transcription factor function.
Resumo:
We developed a coarse-grained yet microscopic detailed model to study the statistical fluctuations of single-molecule protein conformational dynamics of adenylate kinase. We explored the underlying conformational energy landscape and found that the system has two basins of attractions, open and closed conformations connected by two separate pathways. The kinetics is found to be nonexponential, consistent with single-molecule conformational dynamics experiments. Furthermore, we found that the statistical distribution of the kinetic times for the conformational transition has a long power law tail, reflecting the exponential density of state of the underlying landscape. We also studied the joint distribution of the two pathways and found memory effects.
Resumo:
The gelation of physically associating triblock copolymers in a good solvent was investigated by means of the Monte Carlo simulation and a gelation process based on the conformation transition of the copolymer that was described in detail. In our simulative system, it has been found that the gelation is closely related with chain conformations, and there exist four types of chains defined as free, dangling, loop, and bridge conformations. The copolymer chains with different conformations contribute to the formation of gel in different ways. We proposed a conformational transition model, by which we evaluated the role of these four types of chains in sol-gel transition. It was concluded that the free chains keeping the conformation transition equilibrium and the dangling conformation being the hinge of conformation transition, while the chain with loop conformation enlarges the size of the congeries and the chain with bridge conformations binds the congeries consisted of the copolymer chains. In addition, the effects of temperature and concentration on the physical gelation, the association of the copolymer congeries, and the copolymer chain conformations' distribution were discussed.
Resumo:
Single-walled carbon nanotubes (SWNTs) have been considered as the leading candidate for nano-device applications ranging from gene therapy and novel drug delivery to membrane separations. The miniaturization of DNA-nanotube devices for biological applications requires fully understanding DNA-nanotube interaction mechanism. We report here, for the first time, that DNA destabilization and conformational transition induced by SWNTs are sequence-dependent. Contrasting changes for SWNTs binding to poly[dGdC]:poly[dGdC] and poly[dAdT]:poly[dAdT] were observed. For GC homopolymer, DNA melting temperature was decreased 40 degrees C by SWNTs but no change for AT-DNA. SWNTs can induce B-A transition for GC-DNA but AT-DNA resisted the transition. Our circular dichroism, competitive binding assay and triplex destabilization studies provide direct evidence that SWNTs induce DNA B-A transition in solution and they bind to the DNA major groove with GC preference.
Resumo:
Recent studies have focused on the structural features of DNA-lipid assemblies. In this paper, we take methyl green (MG) as a probe molecule to detect the conformational change of DNA molecule induced by dimethyldioctadecylammonium bromide (DDAB) liposomes before the condensation process of DNA begins. DDAB-induced DNA topology changes were investigated by cyclic voltammetry (CV), circular dichroism (CD) and UV-VIS spectrometry. We find that upon binding to DNA, positively charged liposomes induce a conformational transition of DNA molecules from the native B-form to the C motif. Conformational transition in DNA results in the binding modes of MG to DNA, changing and being isolated from DNA to the solution. More stable complexes are formed between DNA and DDAB. That is also proved by the melting study of DNA.
Resumo:
Here we explore the physico-chemical properties of a peptide amphiphile obtained by chemical conjugation of the collagenstimulating peptide KTTKS with 10,12-pentacosadiynoic acid which photopolymerizes as a stable and extended polydiacetylene. We investigate the self-assembly of this new polymer and rationalize its peculiar behavior in terms of a thermal conformational transition. Surprisingly, this polymer shows a thermal transition associated with a non-cooperative increase in b-sheet content at high temperature.
Resumo:
The conformational transition from coil to extended coil for polygalacturonic acid has been studied by conductometric titrations and Monte Carlo simulations. The results of conductometric titrations at different polymer concentrations have been analyzed using the model proposed by Manning,1 which describes the conductivity of polyelectrolitic solutions. This experimental approach provides the transport factor and the average distance between charged groups at different degrees of ionization (α). The mean distances between charged groups have been compared with the values obtained by Monte Carlo simulations. In these simulations the polymer chain is modeled as a self-avoiding random walk in a cubic lattice. The monomers interact through the unscreened Coulombic potential. The ratio between the end-to-end distance and the number of ionized beads provides the average distance between charged monomers. The experimental and theoretical values are in good agreement for the whole range of ionization degrees accessed by conductometric titrations. These results suggest that the electrostatic interactions seem to be the major contribution for the coil to extended coil conformational change. The small deviations for α ≤ 0.5 suggests that the stiffness of the chain, associated with local interactions, becomes increasingly significant as the fraction of charged groups is decreased. © 2000 American Chemical Society.
Resumo:
N-Terminally and internally labeled analogues of the hormones angiotensin (AII, DRVYIHPF) and bradykinin (BK, RPPGFSPFR) were synthesized containing the paramagnetic amino acid 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4- carboxylic acid (TOAC). TOAC replaced Asp 1 (TOAC 1-AII) and Val 3 (TOAC 3-AII) in AII and was inserted prior to Arg 1 (TOAC 0-BK) and replacing Pro 3 (TOAC 3-BK) in BK. The peptide conformational properties were examined as a function of trifluoroethanol (TFE) content and pH. Electron paramagnetic resonance spectra were sensitive to both variables and showed that internally labeled analogues yielded rotational correlation times (TC) considerably larger than N-terminally labeled ones, evincing the greater freedom of motion of the N-terminus. In TFE, τ C increased due to viscosity effects. Calculation of τ Cpeptide/τ CTOAC ratios indicated that the peptides acquired more folded conformations. Circular dichroism spectra showed that, except for TOAC 1-AII in TFE, the N-terminally labeled analogues displayed a conformational behavior similar to that of the parent peptides. In contrast, under all conditions, the TOAC 3 derivatives acquired more restricted conformations. Fluorescence spectra of All and its derivatives were especially sensitive to the ionization of Tyr 4. Fluorescence quenching by the nitroxide moiety was much more pronounced for TOAC 3-AII The conformational behavior of the TOAC derivatives bears excellent correlation with their biological activity, since, while the N-terminally labeled peptides were partially active, their internally labeled counterparts were inactive [Nakaie, C. R., et al., Peptides 2002, 23, 65-70]. The data demonstrate that insertion of TOAC in the middle of the peptide chain induces conformational restrictions that lead to loss of backbone flexibility, not allowing the peptides to acquire their receptor-bound conformation. © 2004 Wiley Periodicals, Inc.