998 resultados para COMPETING INTERACTIONS
Resumo:
We analyse the phase diagram of a quantum mean spherical model in terms of the temperature T, a quantum parameter g, and the ratio p = -J(2)/J(1) where J(1) > 0 refers to ferromagnetic interactions between first-neighbour sites along the d directions of a hypercubic lattice, and J(2) < 0 is associated with competing anti ferromagnetic interactions between second neighbours along m <= d directions. We regain a number of known results for the classical version of this model, including the topology of the critical line in the g = 0 space, with a Lifshitz point at p = 1/4, for d > 2, and closed-form expressions for the decay of the pair correlations in one dimension. In the T = 0 phase diagram, there is a critical border, g(c) = g(c) (p) for d >= 2, with a singularity at the Lifshitz point if d < (m + 4)/2. We also establish upper and lower critical dimensions, and analyse the quantum critical behavior in the neighborhood of p = 1/4. 2012 (C) Elsevier B.V. All rights reserved.
Resumo:
Synthesis, structural characteristics, magnetic studies and DFT calculations in Ni(II) dinuclear complexes containing two bridging N-3(-) and an O-(HO)-O-... linkage reveal the existence of ferromagnetic interactions between Ni(II) centers via N-3(-) ligands and antiferromagnetic interactions through the H-bonded moiety. The overall magnetic behavior of the system depends on the delicate balance between these two competing interactions.
Resumo:
Protein-protein interactions play a central role in many cellular processes. Their characterisation is necessary in order to analyse these processes and for the functional identification of unknown proteins. Existing detection methods such as the yeast two-hybrid (Y2H) and tandem affinity purification (TAP) method provide a means to answer rapidly questions regarding protein-protein interactions, but have limitations which restrict their use to certain interaction networks; furthermore they provide little information regarding interaction localisation at the subcellular level. The development of protein-fragment complementation assays (PCA) employing a fluorescent reporter such as a member of the green fluorescent protein (GFP) family has led to a new method of interaction detection termed Bimolecular Fluorescent Complementation (BiFC). These assays have become important tools for understanding protein interactions and the development of whole genome interaction maps. BiFC assays have the advantages of very low background signal coupled with rapid detection of protein-protein interactions in vivo while also providing information regarding interaction compartmentalisation. Modified forms of the assay such as the use of combinations of spectral variants of GFP have allowed simultaneous visualisation of multiple competing interactions in vivo. Advantages and disadvantages of the method are discussed in the context of other fluorescence-based interaction monitoring techniques.
Resumo:
The electron paramagnetic resonance (EPR) of ternary oxides of Cu(II) has been studied between 4.2 and 300 K. The systems include those with 180 degrees Cu-O-Cu interactions (such as Ln2CuO4, Sr2CuO2Cl2, Sr2CuO3 and Ca2CuO3) or 90 degrees Cu-O-Cu interactions (such as Y2Cu2O5 or BaCuO2) as well as those in which the Cu2+ ions are isolated (such as Y2BaCuO5, La1.8Ba1.2Cu0.9O4.8 and Bi2CuO4). The change in the EPR susceptibility as a function of temperature is compared with that of the DC magnetic susceptibility. Compounds with extended 180 degrees Cu-O-Cu interactions which have a low susceptibility also do not give EPR signals below room temperature. For compounds such as Ca2CuO3 with one-dimensional 180 degrees Cu-O-Cu interactions a weak EPR signal is found the temperature dependence of which is very different from that of the DC susceptibility. For Y2BaCuO5 as well as for La1.8Ba1.2Cu0.9O4.8 the EPR susceptibility as well as its temperature variation are comparable with those of the static susceptibility near room temperature but very different at low temperatures. Bi2CuO4 also shows a similar behaviour. In contrast, for Y2Cu2O5, in which the copper ions have a very distorted nonsquare-planar configuration, the EPR and the static susceptibility show very similar temperature dependences. In general, compounds in which the copper ions have a square-planar geometry give no EPR signal in the ground state (0 K) while those with a distortion from square-planar geometry do give a signal. The results are analysed in the light of recent MS Xalpha calculations on CuO46- square-planar clusters with various Cu-O distances as well as distortions. It is suggested that in square-planar geometry the ground state has an unpaired electron in anionic orbitals which is EPR inactive. Competing interactions from other cations, an increase in Cu-O distance or distortions from square-planar geometry stabilise another state which has considerably more Cu 3d character. These states are EPR active. Both these states, however, are magnetic. For isolated CuO46- clusters the magnetic interactions seem to involve only the states which have mainly anionic character.
Resumo:
We report on exchange bias effects in 10 nm particles of Pr0.5Ca0.5MnO3 which appear as a result of competing interactions between the ferromagnetic (FM)/anti-ferromagnetic (AFM) phases. The fascinating new observation is the demonstration of the temperature dependence of oscillatory exchange bias (OEB) and is tunable as a function of cooling field strength below the SG phase, may be attributable to the presence of charge/spin density wave (CDW/SDW) in the AFM core of PCMO10. The pronounced training effect is noticed at 5 K from the variation of the EB field as a function of number of field cycles (n) upon the field cooling (FC) process. For n > 1, power-law behavior describes the experimental data well; however, the breakdown of spin configuration model is noticed at n >= 1. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. http://dx.doi.org/10.1063/1.3696033]
Resumo:
Colloidal systems with competing interactions are known to exhibit a range of dynamically arrested states because of the systems' inability to reach its underlying equilibrium state due to intrinsic frustration. Graphene oxide (GO) aqueous dispersions constitute a class of 2D-anisotropic colloids with competing interactions long-range electrostatic repulsion, originating from ionized groups located on the rim of the sheets, and weak dispersive attractive interactions originating from the unoxidized graphitic domains. We show here that aqueous dispersions of GO exhibit a range of arrested states, encompassing fluid, glass, and gels that coexist with liquid-crystalline order with increasing volume fraction. These states can be accessed by varying the relative magnitudes of the repulsive and attractive forces. This can be realized by changing the ionic strength of the medium. We observe at low salt concentrations, where long-range electrostatic repulsion dominates, the formation of a repulsive Wigner glass, while at high salt concentrations, when attractive forces dominate, the formation of gels exhibits a nematic to columnar liquid-crystalline transition. The present work highlights how the chemical structure of GO hydrophilic ionizable groups and hydrophobic graphitic domains coexisting on a single sheet gives rise to a rich and complex array of arrested states.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Organische Ladungstransfersysteme weisen eine Vielfalt von konkurrierenden Wechselwirkungen zwischen Ladungs-, Spin- und Gitterfreiheitsgraden auf. Dies führt zu interessanten physikalischen Eigenschaften, wie metallische Leitfähigkeit, Supraleitung und Magnetismus. Diese Dissertation beschäftigt sich mit der elektronischen Struktur von organischen Ladungstransfersalzen aus drei Material-Familien. Dabei kamen unterschiedliche Photoemissions- und Röntgenspektroskopietechniken zum Einsatz. Die untersuchten Moleküle wurden z.T. im MPI für Polymerforschung synthetisiert. Sie stammen aus der Familie der Coronene (Donor Hexamethoxycoronen HMC und Akzeptor Coronen-hexaon COHON) und Pyrene (Donor Tetra- und Hexamethoxypyren TMP und HMP) im Komplex mit dem klassischen starken Akzeptor Tetracyanoquinodimethan (TCNQ). Als dritte Familie wurden Ladungstransfersalze der k-(BEDT-TTF)2X Familie (X ist ein monovalentes Anion) untersucht. Diese Materialien liegen nahe bei einem Bandbreite-kontrollierten Mottübergang im Phasendiagramm.rnFür Untersuchungen mittels Ultraviolett-Photoelektronenspektroskopie (UPS) wurden UHV-deponierte dünne Filme erzeugt. Dabei kam ein neuer Doppelverdampfer zum Einsatz, welcher speziell für Milligramm-Materialmengen entwickelt wurde. Diese Methode wies im Ladungstransferkomplex im Vergleich mit der reinen Donor- und Akzeptorspezies energetische Verschiebungen von Valenzzuständen im Bereich weniger 100meV nach. Ein wichtiger Aspekt der UPS-Messungen lag im direkten Vergleich mit ab-initio Rechnungen.rnDas Problem der unvermeidbaren Oberflächenverunreinigungen von lösungsgezüchteten 3D-Kristallen wurde durch die Methode Hard-X-ray Photoelectron Spectroscopy (HAXPES) bei Photonenenergien um 6 keV (am Elektronenspeicherring PETRA III in Hamburg) überwunden. Die große mittlere freie Weglänge der Photoelektronen im Bereich von 15 nm resultiert in echter Volumensensitivität. Die ersten HAXPES Experimente an Ladungstransferkomplexen weltweit zeigten große chemische Verschiebungen (mehrere eV). In der Verbindung HMPx-TCNQy ist die N1s-Linie ein Fingerabdruck der Cyanogruppe im TCNQ und zeigt eine Aufspaltung und einen Shift zu höheren Bindungsenergien von bis zu 6 eV mit zunehmendem HMP-Gehalt. Umgekehrt ist die O1s-Linie ein Fingerabdruck der Methoxygruppe in HMP und zeigt eine markante Aufspaltung und eine Verschiebung zu geringeren Bindungsenergien (bis zu etwa 2,5eV chemischer Verschiebung), d.h. eine Größenordnung größer als die im Valenzbereich.rnAls weitere synchrotronstrahlungsbasierte Technik wurde Near-Edge-X-ray-Absorption Fine Structure (NEXAFS) Spektroskopie am Speicherring ANKA Karlsruhe intensiv genutzt. Die mittlere freie Weglänge der niederenergetischen Sekundärelektronen (um 5 nm). Starke Intensitätsvariationen von bestimmten Vorkanten-Resonanzen (als Signatur der unbesetzte Zustandsdichte) zeigen unmittelbar die Änderung der Besetzungszahlen der beteiligten Orbitale in der unmittelbaren Umgebung des angeregten Atoms. Damit war es möglich, präzise die Beteiligung spezifischer Orbitale im Ladungstransfermechanismus nachzuweisen. Im genannten Komplex wird Ladung von den Methoxy-Orbitalen 2e(Pi*) und 6a1(σ*) zu den Cyano-Orbitalen b3g und au(Pi*) und – in geringerem Maße – zum b1g und b2u(σ*) der Cyanogruppe transferiert. Zusätzlich treten kleine energetische Shifts mit unterschiedlichem Vorzeichen für die Donor- und Akzeptor-Resonanzen auf, vergleichbar mit den in UPS beobachteten Shifts.rn
Resumo:
Ziel der hier vorliegenden Dissertation ist es, Übergangsmetallpivalate durch gezielte Substitution monodentater Donorliganden in apikalen Positionen, unter Erhalt ihrer Grundstruktur, zu höherdimensionalen Verbindungen zu verknüpfen. Als Ausgangs-verbindungen dienen dabei [Fe3O(O2C-tBu)6(OH2)3]O2C-tBu und [Ni2(OH2)(O2C-tBu)4(HO2C-tBu)4].rnrnIm ersten Teil dieser Arbeit konnten, in Abhängigkeit der in den Reaktionen eingesetzten Liganden mit [Fe3O(O2C-tBu)6(OH2)3]O2C-tBu, symmetrisch oder asymmetrisch substituierte dreikernige Verbindungen erhalten werden. Deren strukturellen und magnetischen Eigenschaften konnten untersucht werden und die daraus resultierenden magnetostrukturellen Korrelationen auf die folgenden vorgestellten mehrkernigen bzw. höherdimensionalen Verbindungen übertragen werden, die erheblich an Komplexität zugenommen haben.rnDie 0-dimensionalen dreikernigen Einheiten zeigen, abhängig von ihren Fe-O-Bindungslängen in den µ3-Oxo verbrückten Einheiten, unterschiedlich starke antiferro-magnetische Austauschwechselwirkungen. Wenn in den Verbindungen eine längere Fe-O-Bindung und zwei kürzere Fe-O-Bindungen existieren, können diese Typ 2:a zugeordnet werden. Daraus folgt, dass die Daten der magnetischen Suszeptibilität mit zwei unterschiedlich starken Austauschwechselwirkungen (J-Kopplungen) zu simulieren sind. Es liegen eine stärkere J-Kopplung über die kurzen Fe-O-Bindungen und zwei schwächere über die lange Fe-O-Bindung vor (J1 > J2). Existieren hingegen eine kürzere Fe-O-Bindung und zwei längere Fe-O-Bindungen (Typ 2:b) sind nun die magnetischen Suszeptibilitätsdaten nur mit zwei stärkeren und einer schwächeren Kopplung zu simulieren (J1 < J2). Die vorgestellten Verbindungen zeigen alle einen Spingrundzustand S≠0, der durch konkurrierende Wechselwirkungen der Spinzentren in Dreieckssituationen begründet ist. rnDer zweite Teil der Arbeit beschäftigte sich mit dem gezielten Aufbau mehrkerniger Verbindungen, in denen die dreikernige Einheit als Grundmotiv erhalten bleiben konnte. Die Austauschwechselwirkungen der fünf- und sechskernigen Verbindungen konnten in Abhängigkeit der Bindungslängen und basierend auf den Ergebnissen der dreikernigen Einheiten aus dem ersten Teil, bestimmt werden. rnDie Synthesen der 4-Hydroxybenzaldehyd verbrückten Kettenverbindung sowie des über 3,5,3’,5’-Tetramethyl-1H,1’H-[4,4’]bipyrazolyl verknüpften 3-dimensionalen Nickelnetzwerks zeigten die erfolgreiche Umsetzung des „Bottom Up“ Ansatzes. Durch Erhaltung des jeweiligen Grundmotivs der verwendeten Ausgangsverbindung konnten die magnetischen Austauschwechselwirkungen unter Einbeziehung schwacher Wechselwirkungen durch den Raum, mit Hilfe der Theta-Weiss Temperatur, in den Simulationen bestimmt werden.rnrnDamit stellt der „Bottom Up“ Ansatz eine hervorragende Syntesestrategie für den Aufbau höherdimensionaler Verbindungen, ausgehend von zwei- bzw. dreikernigen Übergangs-metallkomplexen, dar.rn
Resumo:
Frustrated systems, typically characterized by competing interactions that cannot all be simultaneously satisfied, are ubiquitous in nature and display many rich phenomena and novel physics. Artificial spin ices (ASIs), arrays of lithographically patterned Ising-like single-domain magnetic nanostructures, are highly tunable systems that have proven to be a novel method for studying the effects of frustration and associated properties. The strength and nature of the frustrated interactions between individual magnets are readily tuned by design and the exact microstate of the system can be determined by a variety of characterization techniques. Recently, thermal activation of ASI systems has been demonstrated, introducing the spontaneous reversal of individual magnets and allowing for new explorations of novel phase transitions and phenomena using these systems. In this work, we introduce a new, robust material with favorable magnetic properties for studying thermally active ASI and use it to investigate a variety of ASI geometries. We reproduce previously reported perfect ground-state ordering in the square geometry and present studies of the kagome lattice showing the highest yet degree of ordering observed in this fully frustrated system. We consider theoretical predictions of long-range order in ASI and use both our experimental studies and kinetic Monte Carlo simulations to evaluate these predictions. Next, we introduce controlled topological defects into our square ASI samples and observe a new, extended frustration effect of the system. When we introduce a dislocation into the lattice, we still see large domains of ground-state order, but, in every sample, a domain wall containing higher energy spin arrangements originates from the dislocation, resolving a discontinuity in the ground-state order parameter. Locally, the magnets are unfrustrated, but frustration of the lattice persists due to its topology. We demonstrate the first direct imaging of spin configurations resulting from topological frustration in any system and make predictions on how dislocations could affect properties in numerous materials systems.
Resumo:
There is increasing evidence to support the notion that membrane proteins, instead of being isolated components floating in a fluid lipid environment, can be assembled into supramolecular complexes that take part in a variety of cooperative cellular functions. The interplay between lipid-protein and protein-protein interactions is expected to be a determinant factor in the assembly and dynamics of such membrane complexes. Here we report on a role of anionic phospholipids in determining the extent of clustering of KcsA, a model potassium channel. Assembly/disassembly of channel clusters occurs, at least partly, as a consequence of competing lipid-protein and protein-protein interactions at nonannular lipid binding sites on the channel surface and brings about profound changes in the gating properties of the channel. Our results suggest that these latter effects of anionic lipids are mediated via the Trp67–Glu71–Asp80 inactivation triad within the channel structure and its bearing on the selectivity filter.
Resumo:
This research used a multiple-case study approach to empirically investigate the complex relationship between factors influencing inter-project knowledge sharing—trustworthiness, organizational culture, and knowledge-sharing mechanisms. Adopting a competing values framework, we found evidence of patterns existing between the type of culture, on the project management unit level, and project managers’ perceptions of valuing trustworthy behaviors and the way they share knowledge, on the individual level. We also found evidence for mutually reinforcing the effect of trust and clan culture, which shape tacit knowledge-sharing behaviors.
Resumo:
Studying the weak binding affinities between carbohydrates and proteins has been a central theme in sustained efforts to uncover intricate details of this class of biomolecular interaction. The amphiphilic nature of most carbohydrates, the competing nature of the surrounding water molecules to a given protein receptor site and the receptor binding site characteristics led to the realization that carbohydrates are required to exert favorable interactions, primarily through clustering of the ligands. The clustering of sugar ligands has been augmented using many different innovative molecular scaffolds. The synthesis of clustered ligands also facilitates fine-tuning of the spatial and topological proximities between the ligands, so as to allow the identification of optimal molecular features for significant binding affinity enhancements. The kinetic and thermodynamic parameters have been delineated in many instances, thereby allowing an ability to correlate the multivalent presentation and the observed ligand-receptor interaction profiles. This critical review presents various multivalent ligands, synthetic and semisynthetic, and mechanisms by which the weak binding affinities are overcome, and the ligand-receptor complexation leads to significantly enhanced binding affinities (157 references).