991 resultados para COLLILINEATUS VENOM
Resumo:
Crotalus durissus rattlesnakes are responsible for the most lethal cases of snakebites in Brazil. Crotalus durissus collilineatus subspecies is related to a great number of accidents in Southeast and Central West regions, but few studies on its venom composition have been carried out to date. In an attempt to describe the transcriptional profile of the C. durissus collilineatus venom gland, we generated a cDNA library and the sequences obtained could be identified by similarity searches on existing databases. Out of 673 expressed sequence tags (ESTs) 489 produced readable sequences comprising 201 singletons and 47 clusters of two or more ESTs. One hundred and fifty reads (60.5%) produced significant hits to known sequences. The results showed a predominance of toxin-coding ESTs instead of transcripts coding for proteins involved in all cellular functions. The most frequent toxin was crotoxin, comprising 88% of toxin-coding sequences. Crotoxin B, a basic phospholipase A(2) (PLA(2)) subunit of crotoxin, was represented in more variable forms comparing to the non-enzymatic subunit (crotoxin A), and most sequences coding this molecule were identified as CB1 isoform from Crotalus durissus terrificus venom. Four percent of toxin-related sequences in this study were identified as growth factors, comprising five sequences for vascular endothelial growth factor (VEGF) and one for nerve growth factor (NGF) that showed 100% of identity with C. durissus terrificus NGF. We also identified two clusters for metalloprotease from PII class comprising 3% of the toxins, and two for serine proteases, including gyroxin (2.5%). The remaining 2.5% of toxin-coding ESTs represent singletons identified as homologue sequences to cardiotoxin, convulxin, angiotensin-converting enzyme inhibitor and C-type natriuretic peptide, Ohanin, crotamin and PLA(2) inhibitor. These results allowed the identification of the most common classes of toxins in C. durissus collilineatus snake venom, also showing some unknown classes for this subspecies and even for C. durissus species, such as cardiotoxins and VEGF. (C) 2009 Published by Elsevier Masson SAS.
Resumo:
In the present article we report on the biological characterization and amino acid sequence of a new basic Phospholipases A(2) (PLA(2)) isolated from the Crotalus durissus collilineatus venom (Cdcolli F6), which showed the presence of 122 amino acid residues with a pI value of 8.3, molecular mass of 14 kDa and revealed an amino acid sequence identity of 80% with crotalic PLA(2)s such as Mojave B, Cdt F15, and CROATOX. This homology, however, dropped to 50% if compared to other sources of PLA(2)s such as from the Bothrops snake venom. Also, this PLA(2) induced myonecrosis, although this effect was lower than that of BthTx-I or whole crotoxin and it was able to induce a strong blockage effect on the chick biventer neuromuscular preparation, independently of the presence of the acid subunid (crotapotin). The neurotoxic effect was strongly reduced by pre-incubation with heparin or with anhydrous acetic acid and rho-BPB showed a similar reduction. The rho-BPB did not reduce significantly the myotoxic activity induced by the PLA(2), but the anhydrous acetic acid treatment and the pre-incu-bation of PLA(2) with heparin reduced significantly its effects. This protein showed a strong antimicrobial activity against Xanthomonas axonopodis passiflorae (Gram-negative), which was drastically reduced by incubation of this PLA(2) with rho-BPB, but this effect was marginally reduced after treatment with anhydrous acetic acid. Our findings here allow to speculate that basic amino acid residues on the C-terminal and molecular regions near catalytic site regions such as Calcium binding loop or rho-wing region may be involved in the binding of this PLA(2) to the molecular receptor to induce the neurotoxic effect. The bactericidal effect, however, was completely dependent on the enzymatic activity of this protein.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In the present article we report on the biological characterization and amino acid sequence of a new basic Phospholipases A(2) (PLA(2)) isolated from the Crotalus durissus collilineatus venom (Cdcolli F6), which showed the presence of 122 amino acid residues with a pI value of 8.3, molecular mass of 14 kDa and revealed an amino acid sequence identity of 80% with crotalic PLA(2)s such as Mojave B, Cdt F15, and CROATOX. This homology, however, dropped to 50% if compared to other sources of PLA(2)s such as from the Bothrops snake venom. Also, this PLA(2) induced myonecrosis, although this effect was lower than that of BthTx-I or whole crotoxin and it was able to induce a strong blockage effect on the chick biventer neuromuscular preparation, independently of the presence of the acid subunid (crotapotin). The neurotoxic effect was strongly reduced by pre-incubation with heparin or with anhydrous acetic acid and rho-BPB showed a similar reduction. The rho-BPB did not reduce significantly the myotoxic activity induced by the PLA(2), but the anhydrous acetic acid treatment and the pre-incu-bation of PLA(2) with heparin reduced significantly its effects. This protein showed a strong antimicrobial activity against Xanthomonas axonopodis passiflorae (Gram-negative), which was drastically reduced by incubation of this PLA(2) with rho-BPB, but this effect was marginally reduced after treatment with anhydrous acetic acid. Our findings here allow to speculate that basic amino acid residues on the C-terminal and molecular regions near catalytic site regions such as Calcium binding loop or rho-wing region may be involved in the binding of this PLA(2) to the molecular receptor to induce the neurotoxic effect. The bactericidal effect, however, was completely dependent on the enzymatic activity of this protein.
Resumo:
Flavonoids, coumarins and other polyphenolic compounds are powerful antioxiants both in hydrophilic and lipophylic environments with diverse pharmacological properties including anti-inflammatory activity. Despite being widely used as powerful therapeutic agents for blood coagulation disorders, more specifically to control some serine protease enzymes, the mechanism of anti-inflammatory activity of coumarins is unknown, unlike that of flavonoids. Although their controlling effect on serine proteases is well acknowledged, their action on secretory phospholipase A2 (sPLA2) remains obscure. The present study describes the interaction between umbelliferone (7-HOC) and the sPLA2 from Crotalus durissus collilineatus venom. In vitro inhibition of sPLA2 enzymatic activity by 7-HOC was estimated using 4N3OBA as substrate, resulting in an irreversible decrease in such activity proportional to 7-HOC concentration. The biophysical interaction between 7-HOC and sPLA2 was examined by fluorescent spectral analysis and circular dichroism studies. Results from both techniques clearly showed that 7-HOC strongly modified the secondary structure of this enzyme and CD spectra revealed that it strongly decreased sPLA2 alphahelical conformation. In addition, two-dimensional electrophoresis indicated an evident difference between HPLC-purified native and 7-HOC-treated sPLA2s, which were used in pharmacological experiments to compare their biological activities. In vivo anti-inflammatory activity was assessed by the sPLA2-induced mouse paw edema model, in which 7-HOC presented an effect similar to those of dexamethasone and cyproheptacline against the pro-inflammatory effect induced by native sPLA2 on the mouse paw edema, mast cell degranulation and skin edema. on the other hand, 7-HOC exhibited a more potent inhibitory effect on sPUL2 than that of p-bromophenacyl bromide (p-BPB). Our data suggest that 7-HOC interacts with sPLA2 and causes some structural modifications that lead to a sharp decrease or inhibition of the edematogenic and myotoxic activities of this enzyme, indicating its potential use to suppress inflammation induced by sPLA2 from the snake venom. (C) 2008 Published by Elsevier Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We report the comparative proteomic and antivenomic characterization of the venoms of subspecies cascavella and collilineatus of the Brazilian tropical rattlesnake Crotalus durissus. The venom proteomes of C. d. collilineatus and C. d. cascavella comprise proteins in the range of 4-115 kDa belonging to 9 and 8 toxin families, respectively. Collilineatus and cascavella venoms contain 20-25 main toxins belonging to the following protein families: disintegrin, PLA(2), serine proteinase, cysteine-rich secretory protein (CRISP), vascular endothelial growth factor-like (VEGF), L-amino acid oxidase, C-type lectin-like, and snake venom metalloproteinase (SVMP). As judged by reverse-phase HPLC and mass spectrometry, cascavella and collilineatus share about 90% of their venom proteome. However, the relative occurrence of the toxin families departs among the two C. durissus subspecies venoms. The most notable difference is the presence of the myotoxin crotamine in some C. d. collilineatus specimens (averaging 20.8% of the total proteins of pooled venom), which is absent in the venom of C. d. cascavella. On the other hand, the neurotoxic PLA2 crotoxin represents the most abundant protein in both C. durissus venoms, comprising 67.4% of the toxin proteome in C. d. collilineatus and 72.5% in C. d. cascavella. Myotoxic PLA(2)s are also present in the two venoms albeit in different relative concentrations (18.1% in C. d. cascavella vs. 4.6% in C. d. collilineatus). The venom composition accounts for the clinical manifestations caused by C. durissus envenomations: systemic neurotoxicity and myalgic symptoms and coagulation disturbances, frequently accompanied by myoglobinuria and acute renal failure. The overall compositions of C. d. subspecies cascavella and collilineatus venoms closely resemble that of C. d. terrificus, supporting the view that these taxa can be considered geographical variations of the same species. Pooled venom from adult C.d. cascavella and neonate C.d. terrificus lack crotamine, whereas this skeletal muscle cell membrane depolarizing inducing myotoxin accounts for similar to 20% of the total toxins of venom pooled from C.d. collilineatus and C.d. terrificus from Southern Brazil. The possible relevance of the observed venom variability among the tropical rattlesnake subspecies was assessed by antivenomics using anti-crotalic antivenoms produced at Instituto Butantan and Instituto Vital Brazil. The results revealed that both antivenoms exhibit impaired immunoreactivity towards crotamine and display restricted (similar to 60%) recognition of PLA(2) molecules (crotoxin and D49-myotoxins) from C. d. cascavella and C. d. terrificus venoms. This poor reactivity of the antivenoms may be due to a combination of factors: on the one hand, an inappropriate choice of the mixture of venoms for immunization and, on the other hand, the documented low immunogenicity of PLA(2) molecules. C. durissus causes most of the lethal snakebite accidents in Brazil. The implication of the geographic variation of venom composition for the treatment of bites by different C. durissus subspecies populations is discussed. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
To illustrate the construction of precursor complementary DNAs, we isolated mRNAs from whole venom samples. After reverse transcription polymerase chain reaction (RT-PCR), we amplified the cDNA coding for a neurotoxic protein, phospholipase A2 D49 (PLA2 D49), from the venom of Crotalus durissus collilineatus (Cdc PLA2). The cDNA encoding Cdc PLA2 from whole venom was sequenced. The deduced amino acid sequence of this cDNA has high overall sequence identity with the group II PLA2 protein family. Cdc PLA2 has 14 cysteine residues capable of forming seven disulfide bonds that characterize this group of PLA2 enzymes. Cdc PLA2 was isolated using conventional Sephadex G75 column chromatography and reverse-phase high performance liquid chromatography (RP-HPLC). The molecular mass was estimated using matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry. We tested the neuromuscular blocking activities on chick biventer cervicis neuromuscular tissue. Phylogenetic analysis of Cdc PLA2 showed the existence of two lines of N6-PLA2, denominated F24 and S24. Apparently, the sequences of the New World’s N6-F24-PLA2 are similar to those of the agkistrodotoxin from the Asian genus Gloydius. The sequences of N6-S24-PLA2 are similar to the sequence of trimucrotoxin from the genus Protobothrops, found in the Old World.
Resumo:
Snakebite is a neglected disease and serious health problem in Brazil, with most bites being caused by snakes of the genus Bothrops. Although serum therapy is the primary treatment for systemic envenomation, it is generally ineffective in neutralizing the local effects of these venoms. In this work, we examined the ability of 7,8,3'-trihydroxy-4'-methoxyisoflavone (TM), an isoflavone from Dipteryx alata, to neutralize the neurotoxicity (in mouse phrenic nerve-diaphragm preparations) and myotoxicity (assessed by light microscopy) of Bothrops jararacussu snake venom in vitro. The toxicity of TM was assessed using the Salmonella microsome assay (Ames test). Incubation with TM alone (200 μg/mL) did not alter the muscle twitch tension whereas incubation with venom (40 μg/mL) caused irreversible paralysis. Preincubation of TM (200 μg/mL) with venom attenuated the venom-induced neuromuscular blockade by 84% ± 5% (mean ± SEM; n = 4). The neuromuscular blockade caused by bothropstoxin-I (BthTX-I), the major myotoxic PLA2 of this venom, was also attenuated by TM. Histological analysis of diaphragm muscle incubated with TM showed that most fibers were preserved (only 9.2% ± 1.7% were damaged; n = 4) compared to venom alone (50.3% ± 5.4% of fibers damaged; n = 3), and preincubation of TM with venom significantly attenuated the venom-induced damage (only 17% ± 3.4% of fibers damaged; n = 3; p < 0.05 compared to venom alone). TM showed no mutagenicity in the Ames test using Salmonella strains TA98 and TA97a with (+S9) and without (-S9) metabolic activation. These findings indicate that TM is a potentially useful compound for antagonizing the neuromuscular effects (neurotoxicity and myotoxicity) of B. jararacussu venom.
Resumo:
Phospholipases A2 (PLA2) are key enzymes for production of lipid mediators. We previously demonstrated that a snake venom sPLA2 named MT-III leads to prostaglandin (PG)E2 biosynthesis in macrophages by inducing the expression of cyclooxygenase-2 (COX-2). Herein, we explored the molecular mechanisms and signaling pathways leading to these MT-III-induced effects. Results demonstrated that MT-III induced activation of the transcription factor NF-κB in isolated macrophages. By using NF-κB selective inhibitors, the involvement of this factor in MT-III-induced COX-2 expression and PGE2 production was demonstrated. Moreover, MT-III-induced COX-2 protein expression and PGE2 release were attenuated by pretreatment of macrophages with SB202190, and Ly294002, and H-7-dihydro compounds, indicating the involvement of p38MAPK, PI3K, and PKC pathways, respectively. Consistent with this, MT-III triggered early phosphorylation of p38MAPK, PI3K, and PKC. Furthermore, SB202190, H-7-dihydro, but not Ly294002 treatment, abrogated activation of NF-κB induced by MT-III. Altogether, these results show for the first time that the induction of COX-2 protein expression and PGE2 release, which occur via NF-κB activation induced by the sPLA2-MT-III in macrophages, are modulated by p38MAPK and PKC, but not by PI3K signaling proteins.
Resumo:
Previous research has shown that crotamine, a toxin isolated from the venom of Crotalus durissus terrificus, induces the release of acetylcholine and dopamine in the central nervous system of rats. Particularly, these neurotransmitters are important modulators of memory processes. Therefore, in this study we investigated the effects of crotamine infusion on persistence of memory in rats. We verified that the intrahippocampal infusion of crotamine (1 μg/μl; 1 μl/side) improved the persistence of object recognition and aversive memory. By other side, the intrahippocampal infusion of the toxin did not alter locomotor and exploratory activities, anxiety or pain threshold. These results demonstrate a future prospect of using crotamine as potential pharmacological tool to treat diseases involving memory impairment, although it is still necessary more researches to better elucidate the crotamine effects on hippocampus and memory.
Resumo:
Basic phospholipases A2 (PLA2) are toxic and induce a wide spectrum of pharmacological effects, although the acidic enzyme types are not lethal or cause low lethality. Therefore, it is challenging to elucidate the mechanism of action of acidic phospholipases. This study used the acidic non-toxic Ba SpII RP4 PLA2 from Bothrops alternatus as an antigen to develop anti-PLA2 IgG antibodies in rabbits and used in vivo assays to examine the changes in crude venom when pre-incubated with these antibodies. Using Ouchterlony and western blot analyses on B. alternatus venom, we examined the specificity and sensitivity of phospholipase A2 recognition by the specific antibodies (anti-PLA2 IgG). Neutralisation assays using a non-toxic PLA2 antigen revealed unexpected results. The (indirect) haemolytic activity of whole venom was completely inhibited, and all catalytically active phospholipases A2 were blocked. Myotoxicity and lethality were reduced when the crude venom was pre-incubated with anti-PLA2 immunoglobulins. CK levels in the skeletal muscle were significantly reduced at 6 h, and the muscular damage was more significant at this time-point compared to 3 and 12 h. When four times the LD50 was used (224 μg), half the animals treated with the venom-anti PLA2 IgG mixture survived after 48 h. All assays performed with the specific antibodies revealed that Ba SpII RP4 PLA2 had a synergistic effect on whole-venom toxicity. IgG antibodies against the venom of the Argentinean species B. alternatus represent a valuable tool for elucidation of the roles of acidic PLA2 that appear to have purely digestive roles and for further studies on immunotherapy and snake envenoming in affected areas in Argentina and Brazil.
Resumo:
Envenoming by the pitviper Bothrops jararacussu produces cardiovascular alterations, including coagulopathy, systemic hemorrhage, hypotension, circulatory shock and renal failure. In this work, we examined the activity of this venom in rat isolated right atria. Incubation with venom (0.025, 0.05, 0.1 and 0.2mg/ml) caused concentration-dependent muscle contracture that was not reversed by washing. Muscle damage was seen histologically and confirmed by quantification of creatine kinase-MB (CK-MB) release. Heating and preincubation of venom with p-bromophenacyl bromide (a phospholipase A2 inhibitor) abolished the venom-induced contracture and muscle damage. In contrast, indomethacin, a non-selective inhibitor of cyclooxygenase, and verapamil, a voltage-gated Ca(2+) channel blocker, did not affect the responses to venom. Preincubation of venom with Bothrops or Bothrops/Crotalus antivenom or the addition of antivenom soon after venom attenuated the venom-induced changes in atrial function and tissue damage. These results indicate that B. jararacussu venom adversely affected rat atrial contractile activity and muscle organization through the action of venom PLA2; these venom-induced alterations were attenuated by antivenom.