995 resultados para COATED MAGNETIC FLUID


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Biotecnologia

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Mathematik, Diss., 2006

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to investigate the therapeutic mechanism of treating SMMC-7721 liver cancer cells with magnetic fluid hyperthermia (MFH) using Fe2O3 nanoparticles. Hepatocarcinoma SMMC-7721 cells cultured in vitro were treated with ferrofluid containing Fe2O3 nanoparticles and irradiated with an alternating radio frequency magnetic field. The influence of the treatment on the cells was examined by inverted microscopy, MTT and flow cytometry. To study the therapeutic mechanism of the Fe2O3 MFH, Hsp70, Bax, Bcl-2 and p53 were detected by immunocytochemistry and reverse transcription polymerase chain reaction (RT-PCR). It was shown that Fe2O3 MFH could cause cellular necrosis, induce cellular apoptosis, and significantly inhibit cellular growth, all of which appeared to be dependent on the concentration of the Fe2O3 nanoparticles. Immunocytochemistry results showed that MFH could induce high expression of Hsp70 and Bax, decrease the expression of mutant p53, and had little effect on Bcl-2. RT-PCR indicated that Hsp70 expression was high in the early stage of MFH (<24 h) and became low or absent after 24 h of MFH treatment. It can be concluded that Fe2O3 MFH significantly inhibited the proliferation of in vitro cultured liver cancer cells (SMMC-7721), induced cell apoptosis and arrested the cell cycle at the G2/M phase. Fe2O3 MFH can induce high Hsp70 expression at an early stage, enhance the expression of Bax, and decrease the expression of mutant p53, which promotes the apoptosis of tumor cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neocuproine has been covalently bound to silica-coated maghemite(c-Fe2O3) magnetic nanoparticles (MNPs) by a phenyl ether linkage. The resulting MNPs are able to remove Cu(II) from 12 ppm aqueous solution with an extraction efficiency of up to 99% at pH 2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been shown that CyMe4-BTPhen-functionalized silica-coated maghemite (c-Fe2O3) magnetic nanoparticles (MNPs) are capable of quantitative separation of Am(III) from Eu(III) from HNO3 solutions. These MNPs also show a small but significant selectivity for Am(III) over Cm(III) with a separation factor of around 2 in 4 M HNO3. The water molecule in the cavity of the BTPhen may also play an important part in the selectivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been shown that CyMe4-BTPhen-functionalized silica-coated maghemite (c-Fe2O3) magnetic nanoparticles (MNPs) are capable of quantitative separation of Am(III) from Eu(III) from HNO3 solutions. These MNPs also show a small but significant selectivity for Am(III) over Cm(III) with a separation factor of around 2 in 4 M HNO3. The water molecule in the cavity of the BTPhen may also play an important part in the selectivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ruthenium hydroxide supported on silica-coated magnetic nanoparticles was shown to be an efficient heterogeneous catalyst for the liquid-phase oxidation of a wide range of alcohols using molecular oxygen as a sole oxidant in the absence of co-catalysts or additives. The material was prepared through the loading of the amino modified support with ruthenium(III) ions from an aqueous solution of ruthenium(III) chloride followed by treatment with sodium hydroxide to form ruthenium hydroxide species. Characterizations suggest that ruthenium hydroxide is highly dispersed on the support surface, with no ruthenium containing crystalline phases being detected. Various carbonylic monoterpenoids important for fragrance and pharmaceutical industries can be obtained in good to excellent yields starting from biomass-based monoterpenic alcohols, such as isobomeol, perillyl alcohol, carveol, and citronellol. The catalyst undergoes no metal leaching and can be easily recovered by the application of an external magnet and re-used. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oral administration is a common route in the drug therapy and the solid pharmaceutical forms are widely used. Although much about the performance of these formulations can be learned from in vitro studies using conventional methods, evaluation in vivo is essential in product development. The knowledge of the gastrointestinal transit and how the physiological variables can interfere with the disintegration and drug absorption is a prerequisite for development of dosage forms. The aim of this work was to employing the ac biosusceptometry (ACB) to monitoring magnetic tablets in the human gastrointestinal tract and to obtain the magnetic images of the disintegration process in the colonic region. The ac biosusceptometry showed accuracy in the quantification of the gastric residence time, the intestinal transit time and the disintegration time (DT) of the magnetic formulations in the human gastrointestinal tract. Moreover, ac biosusceptometry is a non-invasive technique, radiation-free and harmless to the volunteers, as well as an important research tool in the pharmaceutical, pharmacological and physiological investigations. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose. To employ the AC Biosusceptometry (ACB) technique to evaluate in vitro and in vivo characteristics of enteric coated magnetic hydroxypropyl methylcellulose (HPMC) capsules and to image the disintegration process.Materials and Methods. HPMC capsules filled with ferrite (MnFe2O4) and coated with Eudragit (R) were evaluated using USP XXII method and administered to fasted volunteers. Single and multisensor ACB systems were used to characterize the gastrointestinal (GI) motility and to determine gastric residence time (GRT), small intestinal transit time (SITT) and orocaecal transit time (OCTT). Mean disintegration time (t (50)) was quantified from 50% increase of pixels in the imaging area.Results. In vitro and in vivo performance of the magnetic HPMC capsules as well as the disintegration process were monitored using ACB systems. The mean disintegration time (t (50)) calculated for in vitro was 25 +/- 5 min and for in vivo was 13 +/- 5 min. In vivo also were determined mean values for GRT (55 +/- 19 min), SITT (185 +/- 82 min) and OCTT (240 +/- 88 min).Conclusions. AC Biosusceptometry is a non-invasive technique originally proposed to monitoring pharmaceutical dosage forms orally administered and to image the disintegration process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present work is the presentation of a quantification methodology for the control of the amount of superparamagnetic iron oxide nanoparticles (SPIONs) administered in biological materials by means of the ferromagnetic resonance technique (FMR) applied to studies both in vivo and in vitro. The in vivo study consisted in the analysis of the elimination and biodistribution kinetics of SPIONs after intravenous administration in Wistar rats. The results were corroborated by X-ray fluorescence. For the in vitro study, a quantitative analysis of the concentration of SPIONs bound to the specific AC133 monoclonal antibodies was carried out in order to detect the expression of the antigenic epitopes (CD133) in stem cells from human umbilical cord blood. In both studies FMR has proven to be an efficient technique for the SPIONs quantification per volume unit (in vivo) or per labeled cell (in vitro).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we evaluated the biodistribution and the elimination kinetics of a biocompatible magnetic fluid, Endorem (TM), based on dextrancoated Fe(3)O(4) nanoparticles endovenously injected into Winstar rats. The iron content in blood and liver samples was recorded using electron paramagnetic resonance (EPR) and X-ray fluorescence (XRF) techniques. The EPR line intensity at g=2.1 was found to be proportional to the concentration of magnetic nanoparticles and the best temperature for spectra acquisition was 298 K. Both EPR and XRF analysis indicated that the maximum concentration of iron in the liver occurred 95 min after the ferrofluid administration. The half-life of the magnetic nanoparticles (MNP) in the blood was (11.6 +/- 0.6) min measured by EPR and (12.6 +/- 0.6) min determined by XRF. These results indicate that both EPR and XRF are very useful and appropriate techniques for the study of kinetics of ferrofluid elimination and biodistribution after its administration into the organism. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study the interaction between magnetic nanoparticles (MNPs) surface-coated with meso-2,3-dimercaptosuccinic acid (DMSA) with both bovine serum albumin (BSA) and human serum albumin (HSA) was investigated. The binding of the MNP-DMSA was probed by the fluorescence quenching of the BSA and HSA tryptophan residue. Magnetic resonance and light microscopy analyses were carried out in in vivo tests using female Swiss mice. The binding constants (K(b)) and the complex stoichiometries (n) indicate that MNP-DMSA/BSA and MNP-DMSA/HSA complexes have low association profiles. After five minutes following intravenous injection of MNP-DMSA into mice`s blood stream we found the lung firstly target by the MNP-DMSA, followed by the liver in a latter stage. This finding suggests that the nanoparticle`s DMSA-coating process probably hides the thiol group, through which albumin usually binds. This indicates that biocompatible MNP-DMSA is a very promising material system to be used as a drug delivery system (DDS), primarily for lung cancer treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study a magnetic nanoemulsion (MNE) was developed from a mixture of two components, namely biodegradable surfactants and biocompatible citrate-coated cobalt ferrite-based magnetic fluid, for entrapment of Zn(II)-Phthalocyanine (ZnPc), the latter a classical photosensitizer (PS) species used in photodynamic therapy (PDT) procedures. The sample`s stability was evaluated as a function of time using photocorrelation spectroscopy (PCS) for determination of the average hydrodynamic diameter, diameter dispersion and zeta potential. The ZnPc-loaded magneto nanoemulstion (ZnPc/MNE) formulation was evaluated in vitro assays to access the phototoxicity and the effect of application of AC magnetic fields (magnetohyperthermia damage) after incubation with J774-A1 macrophages cells. Darkness toxicity, phototoxicity and AC magnetic field exposures revealed an enhancement response for combined photodynamic and magnetohyperthermia (MHT) processes, indicating the presence of the synergic effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied the expression pattern of cell adhesion molecules associated to transendothelial migration of leukocytes in different lung`s vascular compartments after administration of a magnetic fluid sample containing maghemite nanoparticles surface-coated with meso-2,3-dimercaptosuccinic acid. The analyses were conducted in mice 4 and 12 h after endovenous administration of the magnetic fluid in control mice. Firstly, the migratory activity of leukocytes after magnetic fluid surface-coated with meso-2,3-dimercaptosuccinic acid administration was confirmed using broncho-alveolar lavage and light microscopy. Then, the expression of cell adhesion molecules in the lung`s vascular compartments was investigated by immunofluorescence microscopy of frozen sections, using antibodies against L-selectin, P-selectin, E-selectin, macrophage antigen-1, and leukocyte function associated antigen-1. L- and P-selectin showed similar pattern of expression in the pulmonary vasculature in animals treated with magnetic fluid and in the control group. In contrast, macrophage antigen-1 and leukocyte function associated antigen-1 were found in capillary only in animals treated with magnetic fluid surface-coated with meso-2,3-dimercaptosuccinic acid administration. In addition, after magnetic fluid administration E-selectin was found in post-capillary sites. Our findings demonstrated that magnetic fluid surface-coated with meso-2,3-dimercaptosuccinic acid administration exhibits modulation effects on expression patterns of E-selectin, macrophage antigen-1, and leukocyte function associated antigen-1 in the lung`s vascular compartments. These findings are very important in a strategy to reduce the potential toxicity of magnetic fluid surface-coated with meso-2,3-dimercaptosuccinic acid administration for medical applications.