978 resultados para CLASS-II TETRAMERS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the past decade, many efforts have been made to identify MHC class II-restricted epitopes from different tumor-associated Ags. Melan-A/MART-1(26-35) parental or Melan-A/MART-1(26-35(A27L)) analog epitopes have been widely used in melanoma immunotherapy to induce and boost CTL responses, but only one Th epitope is currently known (Melan-A51-73, DRB1*0401 restricted). In this study, we describe two novel Melan-A/MART-1-derived sequences recognized by CD4 T cells from melanoma patients. These epitopes can be mimicked by peptides Melan-A27-40 presented by HLA-DRB1*0101 and HLA-DRB1*0102 and Melan-A25-36 presented by HLA-DQB1*0602 and HLA-DRB1*0301. CD4 T cell clones specific for these epitopes recognize Melan-A/MART-1+ tumor cells and Melan-A/MART-1-transduced EBV-B cells and recognition is reduced by inhibitors of the MHC class II presentation pathway. This suggests that the epitopes are naturally processed and presented by EBV-B cells and melanoma cells. Moreover, Melan-A-specific Abs could be detected in the serum of patients with measurable CD4 T cell responses specific for Melan-A/MART-1. Interestingly, even the short Melan-A/MART-1(26-35(A27L)) peptide was recognized by CD4 T cells from HLA-DQ6+ and HLA-DR3+ melanoma patients. Using Melan-A/MART-1(25-36)/DQ6 tetramers, we could detect Ag-specific CD4 T cells directly ex vivo in circulating lymphocytes of a melanoma patient. Together, these results provide the basis for monitoring of naturally occurring and vaccine-induced Melan-A/MART-1-specific CD4 T cell responses, allowing precise and ex vivo characterization of responding T cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MHC-peptide tetramers have become essential tools for T-cell analysis, but few MHC class II tetramers incorporating peptides from human tumor and self-antigens have been developed. Among limiting factors are the high polymorphism of class II molecules and the low binding capacity of the peptides. Here, we report the generation of molecularly defined tetramers using His-tagged peptides and isolation of folded MHC/peptide monomers by affinity purification. Using this strategy we generated tetramers of DR52b (DRB3*0202), an allele expressed by approximately half of Caucasians, incorporating an epitope from the tumor antigen NY-ESO-1. Molecularly defined tetramers avidly and stably bound to specific CD4(+) T cells with negligible background on nonspecific cells. Using molecularly defined DR52b/NY-ESO-1 tetramers, we could demonstrate that in DR52b(+) cancer patients immunized with a recombinant NY-ESO-1 vaccine, vaccine-induced tetramer-positive cells represent ex vivo in average 1:5,000 circulating CD4(+) T cells, include central and transitional memory polyfunctional populations, and do not include CD4(+)CD25(+)CD127(-) regulatory T cells. This approach may significantly accelerate the development of reliable MHC class II tetramers to monitor immune responses to tumor and self-antigens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Generation of tumor-antigen specific CD4(+) T-helper (T(H)) lines through in vitro priming is of interest for adoptive cell therapy of cancer, but the development of this approach has been limited by the lack of appropriate tools to identify and isolate low frequency tumor antigen-specific CD4(+) T cells. Here, we have used recently developed MHC class II/peptide tetramers incorporating an immunodominant peptide from NY-ESO-1 (ESO), a tumor antigen frequently expressed in different human solid and hematologic cancers, to implement an in vitro priming platform allowing the generation of ESO-specific T(H) lines. We isolated phenotypically defined CD4(+) T-cell subpopulations from circulating lymphocytes of DR52b(+) healthy donors by flow cytometry cell sorting and stimulated them in vitro with peptide ESO(119-143), autologous APC and IL-2. We assessed the frequency of ESO-specific cells in the cultures by staining with DR52b/ESO(119-143) tetramers (ESO-tetramers) and TCR repertoire of ESO-tetramer(+) cells by co-staining with TCR variable β chain (BV) specific antibodies. We isolated ESO-tetramer(+) cells by flow cytometry cell sorting and expanded them with PHA, APC and IL-2 to generate ESO-specific T(H) lines. We characterized the lines for antigen recognition, by stimulation with ESO peptide or recombinant protein, cytokine production, by intracellular staining using specific antibodies, and alloreactivity, by stimulation with allo-APC. Using this approach, we could consistently generate ESO-tetramer(+) T(H) lines from conventional CD4(+)CD25(-) naïve and central memory populations, but not from effector memory populations or CD4(+)CD25(+) Treg. In vitro primed T(H) lines recognized ESO with affinities comparable to ESO-tetramer(+) cells from patients immunized with an ESO vaccine and used a similar TCR repertoire. In this study, using MHC class II/ESO tetramers, we have implemented an in vitro priming platform allowing the generation of ESO-monospecific polyclonal T(H) lines from non-immune individuals. This is an approach that is of potential interest for adoptive cell therapy of patients bearing ESO-expressing cancers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: It is well known that the efficacy and the efficiency of a Class II malocclusion treatment are aspects closely related to the severity of the dental anteroposterior discrepancy. Even though, sample selection based on cephalometric variables without considering the severity of the occlusal anteroposterior discrepancy is still common in current papers. In some of them, when occlusal parameters are chosen, the severity is often neglected. The purpose of this study is to verify the importance given to the classification of Class II malocclusion, based on the criteria used for sample selection in a great number of papers published in the orthodontic journal with the highest impact factor. MATERIAL AND METHODS: A search was performed in PubMed database for full-text research papers referencing Class II malocclusion in the history of the American Journal of Orthodontics and Dentofacial Orthopedics (AJO-DO). RESULTS: A total of 359 papers were retrieved, among which only 72 (20.06%) papers described the occlusal severity of the Class II malocclusion sample. In the other 287 (79.94%) papers that did not specify the anteroposterior discrepancy severity, description was considered to be crucial in 159 (55.40%) of them. CONCLUSIONS: Omission in describing the occlusal severity demands a cautious interpretation of 44.29% of the papers retrieved in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current HIV vaccine approaches are focused on immunogens encoding whole HIV antigenic proteins that mainly elicit cytotoxic CD8+ responses. Mounting evidence points toward a critical role for CD4+ T cells in the control of immunodeficiency virus replication, probably due to cognate help. Vaccine-induced CD4+ T cell responses might, therefore, have a protective effect in HIV replication. In addition, successful vaccines may have to elicit responses to multiple epitopes in a high proportion of vaccinees, to match the highly variable circulating strains of HIV. Using rational vaccine design, we developed a DNA vaccine encoding 18 algorithm-selected conserved, ""promiscuous"" ( multiple HLA-DR-binding) B-subtype HIV CD4 epitopes - previously found to be frequently recognized by HIV-infected patients. We assessed the ability of the vaccine to induce broad T cell responses in the context of multiple HLA class II molecules using different strains of HLA class II-transgenic mice (-DR2, -DR4, -DQ6 and -DQ8). Mice displayed CD4+ and CD8+ T cell responses of significant breadth and magnitude, and 16 out of the 18 encoded epitopes were recognized. By virtue of inducing broad responses against conserved CD4+ T cell epitopes that can be recognized in the context of widely diverse, common HLA class II alleles, this vaccine concept may cope both with HIV genetic variability and increased population coverage. The vaccine may thus be a source of cognate help for HIV-specific CD8+ T cells elicited by conventional immunogens, in a wide proportion of vaccinees.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Glioblastoma is the most lethal primary malignant brain tumor. Although considerable progress has been made in the treatment of this aggressive tumor, the clinical outcome for patients remains poor. Histone deacetylases (HDACs) are recognized as promising targets for cancer treatment. In the past several years, HDAC inhibitors (HDACis) have been used as radiosensitizers in glioblastoma treatment. However, no study has demonstrated the status of global HDAC expression in gliomas and its possible correlation to the use of HDACis. The purpose of this study was to evaluate and compare mRNA and protein levels of class I, II and IV of HDACs in low grade and high grade astrocytomas and normal brain tissue and to correlate the findings with the malignancy in astrocytomas. Methods: Forty-three microdissected patient tumor samples were evaluated. The histopathologic diagnoses were 20 low-grade gliomas (13 grade I and 7 grade II) and 23 high-grade gliomas (5 grade III and 18 glioblastomas). Eleven normal cerebral tissue samples were also analyzed (54 total samples analyzed). mRNA expression of class I, II, and IV HDACs was studied by quantitative real-time polymerase chain reaction and normalized to the housekeeping gene beta-glucuronidase. Protein levels were evaluated by western blotting. Results: We found that mRNA levels of class II and IV HDACs were downregulated in glioblastomas compared to low-grade astrocytomas and normal brain tissue (7 in 8 genes, p < 0.05). The protein levels of class II HDAC9 were also lower in high-grade astrocytomas than in low-grade astrocytomas and normal brain tissue. Additionally, we found that histone H3 (but not histone H4) was more acetylated in glioblastomas than normal brain tissue. Conclusion: Our study establishes a negative correlation between HDAC gene expression and the glioma grade suggesting that class II and IV HDACs might play an important role in glioma malignancy. Evaluation of histone acetylation levels showed that histone H3 is more acetylated in glioblastomas than normal brain tissue confirming the downregulation of HDAC mRNA in glioblastomas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To verify the relationship between maxillary and mandibular effective lengths and dental crowding in patients with Class II malocclusions. Materials and Methods: The sample comprised 80 orthodontic patients with complete Class II malocclusions in the permanent dentition (47 male, 33 female) who were divided into two groups according to the amount of mandibular tooth-arch size discrepancy. The maxillary and mandibular effective lengths (Co-A and Co-Gn) and tooth-arch size discrepancies were measured on the initial cephalograms and dental casts, respectively. Intergroup comparisons of apical base lengths were performed with independent t-tests. Correlation between base length and dental crowding was examined by means of Pearson's correlation coefficient (P < .05). Results: Patients with Class II malocclusion and moderate to severe crowding had significantly smaller maxillary and mandibular effective lengths than subjects with the same malocclusion and slight mandibular crowding. A weak inverse correlation was also found between maxillary and mandibular effective lengths and the severity of dental crowding. Conclusion: Decreased maxillary and mandibular effective lengths constitute an important factor associated with dental crowding in patients with complete Class II malocclusion. (Angle Orthod. 2011;81:217-221.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To identify the skeletal, dentoalveolar, and soft tissue changes that occur during Class II correction with the Cantilever Bite Jumper (CBJ). Materials and Methods: This prospective cephalometric study was conducted on 26 subjects with Class II division 1 malocclusion treated with the CBJ appliance. A comparison was made with 26 untreated subjects with Class II malocclusion. Lateral head films from before and after CBJ therapy were analyzed through conventional cephalometric and Johnston analyses. Results: Class II correction was accomplished by means of 2.9 mm apical base change, 1.5 mm distal movement of the maxillary molars, and 1.1 mm mesial movement of the mandibular molars. The CBJ exhibited good control of the vertical dimension. The main side effect of the CBJ is that the vertical force vectors of the telescope act as lever arms and can produce mesial tipping of the mandibular molars. Conclusions: The Cantilever Bite Jumper corrects Class II malocclusions with similar percentages of skeletal and dentoalveolar effects. (Angle Orthod. 2009:79;)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motivation: Prediction methods for identifying binding peptides could minimize the number of peptides required to be synthesized and assayed, and thereby facilitate the identification of potential T-cell epitopes. We developed a bioinformatic method for the prediction of peptide binding to MHC class II molecules. Results: Experimental binding data and expert knowledge of anchor positions and binding motifs were combined with an evolutionary algorithm (EA) and an artificial neural network (ANN): binding data extraction --> peptide alignment --> ANN training and classification. This method, termed PERUN, was implemented for the prediction of peptides that bind to HLA-DR4(B1*0401). The respective positive predictive values of PERUN predictions of high-, moderate-, low- and zero-affinity binder-a were assessed as 0.8, 0.7, 0.5 and 0.8 by cross-validation, and 1.0, 0.8, 0.3 and 0.7 by experimental binding. This illustrates the synergy between experimentation and computer modeling, and its application to the identification of potential immunotheraaeutic peptides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the mechanisms that control MHC class II (MHC II) expression in immature and activated dendritic cells (DC) grown from spleen and bone marrow precursors. Degradation of the MHC II chaperone invariant chain (li), acquisition of peptide cargo by MHC II, and delivery of MHC II-peptide complexes to the cell surface proceeded similarly in both immature and activated DC. However, immature DC reendocytosed and then degraded the MHC II-peptide complexes much faster than the activated DC. MHC II expression in DC is therefore not controlled by the activity of the protease(s) that degrade Ii, but by the rate of endocytosis of peptide-loaded MHC II. Late after activation, DC downregulated MHC II synthesis both in vitro and in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The class II major histocompatibility complex molecule I-A(g7) is strongly linked to the development of spontaneous insulin-dependent diabetes mellitus (IDDM) in non obese diabetic mice and to the induction of experimental allergic encephalomyelitis in Biozzi AB/H mice. Structurally, it resembles the HLA-DQ molecules associated with human IDDM, in having a non-Asp residue at position 57 in its beta chain. To identify the requirements for peptide binding to I-A(g7) and thereby potentially pathogenic T cell epitopes, we analyzed a known I-A(g7)-restricted T cell epitope, hen egg white lysozyme (HEL) amino acids 9-27. NH2- and COOH-terminal truncations demonstrated that the minimal epitope for activation of the T cell hybridoma 2D12.1 was M12-R21 and the minimum sequence for direct binding to purified I-A(g7) M12-Y20/K13-R21. Alanine (A) scanning revealed two primary anchors for binding at relative positions (p) 6 (L) and 9 (Y) in the HEL epitope. The critical role of both anchors was demonstrated by incorporating L and Y in poly(A) backbones at the same relative positions as in the HEL epitope. Well-tolerated, weakly tolerated, and nontolerated residues were identified by analyzing the binding of peptides containing multiple substitutions at individual positions. Optimally, p6 was a large, hydrophobic residue (L, I, V, M), whereas p9 was aromatic and hydrophobic (Y or F) or positively charged (K, R). Specific residues were not tolerated at these and some other positions. A motif for binding to I-A(g7) deduced from analysis of the model HEL epitope was present in 27/30 (90%) of peptides reported to be I-A(g7)-restricted T cell epitopes or eluted from I-A(g7). Scanning a set of overlapping peptides encompassing human proinsulin revealed the motif in 6/6 good binders (sensitivity = 100%) and 4/13 weak or non-binders (specificity = 70%). This motif should facilitate identification of autoantigenic epitopes relevant to the pathogenesis and immunotherapy of IDDM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Streptococcus pyogenes infections remain a health problem in several countries due to poststreptococcal sequelae. We developed a vaccine epitope (StreptInCor) composed of 55 amino acids residues of the C-terminal portion of the M protein that encompasses both T and B cell protective epitopes. The nuclear magnetic resonance (NMR) structure of the StreptInCor peptide showed that the structure was composed of two microdomains linked by an 18-residue alpha-helix. A chemical stability study of the StreptInCor folding/unfolding process using far-UV circular dichroism showed that the structure was chemically stable with respect to pH and the concentration of urea. The T cell epitope is located in the first microdomain and encompasses 11 out of the 18 alpha-helix residues, whereas the B cell epitope is in the second microdomain and showed no alpha-helical structure. The prediction of StreptInCor epitope binding to different HLA class II molecules was evaluated based on an analysis of the 55 residues and the theoretical possibilities for the processed peptides to fit into the P1, P4, P6, and P9 pockets in the groove of several HLA class II molecules. We observed 7 potential sites along the amino acid sequence of StreptInCor that were capable of recognizing HLA class II molecules (DRB1*, DRB3*, DRB4*, and DRB5*). StreptInCoroverlapping peptides induced cellular and humoral immune responses of individuals bearing different HLA class II molecules and could be considered as a universal vaccine epitope.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose. To examine the postnatal development of major histocompatibility complex (MHC) class II-positive dendritic cells (DC) in the iris of the normal rat eye. Methods. Single-and double-color immunomorphologic studies were performed on whole mounts prepared from rat iris taken at selected postnatal ages (2 to 3 days to 78 weeks). Immunopositive cells were enumerated, using a quantitative light microscope, and MHC class II expression on individual cells was assessed by microdensitometric analysis. Results. Major histocompatibility class II-positive DCs in the iris developed in an age-dependent manner and reached adult-equivalent density and structure at approximately 10 weeks of age, considerably later than previously described in other DC populations in the rat. In contrast, the anti-rat DC monoclonal antibody OX62 revealed a population of cells present at adult-equivalent levels as early as 3 weeks after birth. Dual-color immunostaining and microdensitometric analysis demonstrated that during postnatal growth, development of the network of MHC class II-positive DCs was a consequence of the progressive increase in expression of MHC class II antigen by OX62-positive cells. Conclusions. During postnatal growth, the DC population of the iris develops initially as an OX62-positive-MHC class II-negative population, which then develops increasing MHC class II expression in situ and finally resembles classic DC populations in other tissue sites. Maturation of the iris DC population is temporally delayed compared with time to maturation in other tissue sites in the rat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

P>Strongyloides stercoralis is an intestinal nematode capable of chronic, persistent infection and hyperinfection of the host; this can lead to dissemination, mainly in immunosuppressive states, in which the infection can become severe and result in the death of the host. In this study, we investigated the immune response against Strongyloides venezuelensis infection in major histocompatibility complex (MHC) class I or class II deficient mice. We found that MHC II(-/-) animals were more susceptible to S. venezuelensis infection as a result of the presence of an elevated number of eggs in the faeces and a delay in the elimination of adult worms compared with wild-type (WT) and MHC I(-/-) mice. Histopathological analysis revealed that MHC II(-/-) mice had a mild inflammatory infiltration in the small intestine with a reduction in tissue eosinophilia. These mice also presented a significantly lower frequency of eosinophils and mononuclear cells in the blood, together with reduced T helper type 2 (Th2) cytokines in small intestine homogenates and sera compared with WT and MHC I(-/-) animals. Additionally, levels of parasite-specific immunoglobulin M (IgM), IgA, IgE, total IgG and IgG1 were also significantly reduced in the sera of MHC II(-/-) infected mice, while a non-significant increase in the level of IgG2a was found in comparison to WT or MHC I(-/-) infected mice. Together, these data demonstrate that expression of MHC class II but not class I molecules is required to induce a predominantly Th2 response and to achieve efficient control of S. venezuelensis infection in mice.