998 resultados para CHN analysis


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Research on conducting polymers, organic light emitting diodes and organic solar cells has been an exciting field for the past decade. The challenge with these organic devices is the long term stability of the active material. Organic materials are susceptible to chemical degradation in the presence of oxygen and moisture. The sensitivity of these materials towards oxygen and moisture makes it imperative to protect them by encapsulation. Polymer nanocomposites can be used as encapsulation materials in order to prevent material degradation. In the present work, amine functionalized alumina was used as a cross-linking and reinforcing material for the polymer matrix in order to fabricate the composites to be used for encapsulation of devices. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and Raman spectroscopy were used to elucidate the surface chemistry. Thermogravimetric analysis techniques and CHN analysis were used to quantify grafting density of amine groups over the surface of the nanoparticles. Mechanical characterizations of the composites with various loadings were carried out with dynamic mechanical analyzer. It was observed that the composites have good thermal stability and mechanical flexibility, which are important for an encapsulant. The morphology of the composites was evaluated using scanning electron microscopy and atomic force microscopy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tris(dicyclohexylamino)silane. (DCA)3SiH. is prepared by the reaction of trichlorosilane with dicyclohexylamine. This is found to undergo transamination reactions with other secondary amines (R2NH). such as pyrrolidine, piperidine, hexamethyleneimine. morpholine. N-methylpiperazine and diethylamine to yield mixed tri(amino)silanes of the formula (DCA)(R2N)2SiH in quantitative yields. These new derivatives are found to be moisture sensitive and hydrolyze to yield their respective amines, hydrogen and silica. They are found to be stable in an inert atmosphere. They have been characterized by IR, NMR (H-1, Si-29), mass spectroscopy and CHN analysis. N-15 NMR for one of the compounds has been done.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Five new open-framework compounds of gallium have been synthesized by hydrothermal methods and their structures determined by single crystal X-ray diffraction studies. The compounds, C8N4H26]Ga6F4(PO4)(6)], I, C5N3H11]Ga3F2(PO4)(3)]center dot H2O, II, C6N3H19]Ga-4(C2O4)(PO4)(4)(H2PO4)]center dot 2H(2)O, III, Ga2F3(HPO4)(PO4)]center dot 2H(3)O, IV, and C3N2H5](2)Ga-4(H2O)(3)(HPO3)(7)], V, possess three-dimensional structures. All the compounds are formed by the connectivity between the Ga polyhedra and phosphite/phosphate units. The observation of SBU-6 (I and II) and spiro-5 (IV) secondary building units (SBUs) are noteworthy. The flexibility of the formation of gallium phosphate frameworks has been established by the isolation of two related structures (I and II) from the same SBU units but different organic amines. Some of the present structures have close resemblance to the gallium phosphate phases known earlier. The compounds have been characterized by CHN analysis, powder XRD, IR, and TGA. (C) 2011 Elsevier B. V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The metal complex, [Ni(en)2(H2O)2](NO3)2 (en = ethylenediamine), was decomposed in a static furnace at 200 C by autogenous decomposition to obtain phase pure metallic nickel nanocrystallites. The nickel metal thus obtained was studied by XRD, IR spectra, SEM and CHN analysis. The nickel crystallites are in the nanometer range as indicated by XRD studies. The IR spectral studies and CHN analyses show that the surface is covered with a nitrogen containing species. Thermogravimetric mass gain shows that the product purity is high (93%). The formed nickel is stable and resistant to oxidation up to 350 C probably due to the coverage of nitrogen containing species. Activation energy for the oxidation of the prepared nickel nanocrystallites was determined by non-isothermal methods and was found to depend on the conversion ratio. The oxidation kinetics of the nickel crystallites obeyed a Johnson–Mehl–Avrami mechanism probably due to the special morphology and crystallite strain present on the metal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The work presented in this thesis is mainly centered on the synthesis and characterization of some encapsulated transition metal complexes and the catalytic activity of the synthesized complexes in certain organic reactions.thesis deals with the catalytic activity of ruthenium-exchanged zeolite and the zeolite encapsulated complexes of SSC, SOD, SPD, AA, ABA, DMG, PCO, PCP, CPO and CPP in the hydroxylation of phenol using hydrogen peroxide. The products were analyzed with a GC to determine the percentage conversion and the chromatograms indicate the presence of different products like hydroquinone, catechol,benzoquinone, benzophenone etc. The major product formed is hydroquinone. From the screening studies, RuYSSC was found to be the most effective catalyst for phenol hydroxylation with 94.4% conversion and 76% hydroquinone selectivity. The influence of different factors like reaction time, temperature, amount of catalyst, effect of various solvents and oxidant to substrate ratio in the catalytic activity were studied in order to find out the optimum conditions for the hydroxylation reaction. The influence of time on the percentage conversion of phenol was studied by conducting the reactions for different durations varying from one hour to four hours. There is an induction period for all the complexes and the length of the induction period depends on the nature of the active components. Though the conversion of phenol and selectivity for hydroquinone. increases with time, the amount of benzoquinone formed decreases with time. This is probably due to the decomposition of benzoquinone formed during the initial stages of the reaction into other degradation products like benzophenones. The effect of temperature was studied by carrying out the reaction at three different temperatures, 30°C, 50°C and 70°C. Reactions carried at temperatures higher than 70°C result either in the decomposition of the products or in the formation of tarry products. Activity increased with increase in the amount of the catalyst up to a certain level. However further increase in the weight of the catalyst did not have any noticeable effect on the percentage conversion. The catalytic studies indicate that the oxidation reaction increases with increase in the volume of hydrogen peroxide till a certain volume. But further increase in the volume of H202 is detrimental as some dark mass is obtained after four hours of reaction. The catalytic activity is largely dependent on the nature of the solvent and maximum percentage conversion occurred when the solvent used is water. The intactness of the complexes within the zeolite cages enhances their possibility of recycling and the activities of the recycled catalysts show only a slight decrease when compared to the fresh samples .

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This master thesis aims at developing a new methodology for thermochemical degradation of dry coconut fiber (dp = 0.25mm) using laboratory rotating cylinder reactor with the goal of producing bio-oil. The biomass was characterized by infrared spectroscopy with Fourier transform FTIR, thermogravimetric analysis TG, with evaluation of activation energy the in non-isothermal regime with heating rates of 5 and 10 °C/min, differential themogravimetric analysis DTG, sweeping electron microscopy SEM, higher heating value - HHV, immediate analysis such as evaluated all the amounts of its main constituents, i.e., lignin, cellulose and hemicelluloses. In the process, it was evaluated: reaction temperature (450, 500 and 550oC), carrier gas flow rate (50 and 100 cm³/min) and spin speed (20 and 25 Hz) to condensate the bio-oil. The feed rate of biomass (540 g/h), the rotation of the rotating cylinder (33.7 rpm) and reaction time (30 33 min) were constant. The phases obtained from the process of pyrolysis of dry coconut fiber were bio-oil, char and the gas phase non-condensed. A macroscopic mass balance was applied based on the weight of each phase to evaluate their yield. The highest yield of 20% was obtained from the following conditions: temperature of 500oC, inert gas flow of 100 cm³/min and spin speed of 20 Hz. In that condition, the yield in char was 24.3%, non-condensable gas phase was 37.6% and losses of approximately 22.6%. The following physicochemical properties: density, viscosity, pH, higher heating value, char content, FTIR and CHN analysis were evaluated. The sample obtained in the best operational condition was subjected to a qualitative chromatographic analysis aiming to know the constituents of the produced bio-oil, which were: phenol followed by sirigol, acetovanilona and vinyl guaiacol. The solid phase (char) was characterized through an immediate analysis (evaluation of moisture, volatiles, ashes and fixed carbon), higher heating value and FTIR. The non-condensing gas phase presented as main constituents CO2, CO and H2. The results were compared to the ones mentioned by the literature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Films of chitosan with trivalent lanthanides ions Eu3+ and Tb3+ were respectively prepared in the ratio of 3:1 m/m (chitosan: lanthanide) and 6:1 m/m (chitosan: lanthanide). There were no formations of films in a ratio of 1:1 m/m (chitosan: lanthanides). The films of chitosan with the Tb3+ ion have the same transparent appearance than the pure chitosan films. The film of chitosan with Eu3+ ion has a muddy appearance. These films present good resistance to tear. The appearance of the compounds prepared in ratio 1:1m/m is a white powder. The films and compounds of chitosan were characterized by Elementary Analysis (CHN), Thermal Analysis (TG/DTG) and Spectroscopy of Luminescence. The CHN analysis was made only for compounds prepared in ratio 1:1m/m, suggesting that these compounds possess the formula QUILn.6H2O, where QUI = Chitosan and Ln = Lanthanide. The results of the curves TG/DTG indicated that there are strong interactions between Eu3+ or Tb3+ and chitosan, causing a lesser lost of mass in the films. The luminescence analysis showed that the films of chitosan with the ions Eu3+ and Tb3+ present emissions in the region of the visible one, with bands of the chitosan and of the Eu3+ ion. The luminescence analysis of the compounds of chitosan with the Eu3+ and Tb3+ ions suggest that the chitosan does not transfer into energy to the ions lanthanides, however the chemical neighborhood around of the ion lanthanides breaks the selection rules and, conseqüently the 4f-4f transitions of the lanthanide ions are observed

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This is a work involving fundamental studies of chemistry where the synthesis and structural characterization, as well as a possible future application of these new compounds as luminescent sensors or sunscreen agents, complexes with 4,4 diaminostilbene-2,2-disulfonic (DSD) and trivalent lanthanide ions La3+, Nd3+, Eu3+, Gd3+ and Yb3+, were synthesized in the ratio of 3 mmol: 1 mmol (DSD: lanthanides). The complexes obtained with these ions were present in powder form and were characterized by complexometric titration with EDTA CHN Elemental analysis, molecular absorption spectroscopy in the ultraviolet region, the absorption spectroscopy in the infrared, thermal analysis (TG / DTG), Nuclear Magnetic Resonance - NMR 1H and Luminescence Spectroscopy. The complexometric titration and CHN analysis, confirmed the TG / DTG which suggest that these complexes have the following general chemical formulas: [La2(C14H12S2O6N2)2(H2O)2Cl2].7H2O,[Nd2(C14H12S2O6N2)2(H2O)2Cl2].6H2O,[Eu2(C14 H12S2O6N2)2(H2O)2Cl2].7H2O,[Gd2(C14H12S2O6N2)2(H2O)2Cl2].4H2O e [Yb2(C14H12S2O6N2)2(H2O)2].6H2O. The disappearance of the bands in the infrared spectrum at 2921 cm-1 and 2623 cm-1 and the displacement of the bands in the spectra of the amine complex indicate that the lanthanide ion is coordinated to the oxygen atoms and the sulfonate groups of the nitrogens amines, suggesting the formation of the dimer. The disappearance of the signal and the displacement signal SO3H amines in the 1H NMR spectrum of this complex are also indicative coordination and dimer formation. The Thermogravimetry indicates that the DSD is thermally stable in the range of 40º to 385°C and their complexes with lanthanide ions exhibit weight loss between 4 and 5 stages. The Uv-visible spectra indicated that the DSD and complexes exhibit cis isomers. The analysis of luminescence indicates that the complexes do not exhibit emission in the region of the lanthanides but an intense emission part of the binder. This is related to the triplet states of the ligand, which are in the lowest energy state emitting lanthanide ions, and also the formation of the dimer that suppress the luminescence of ion Eu3+. The formation of dimer was also confirmed by calculating the europium complex structure using the model Hamiltonian PM6 and Sparkle

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O presente trabalho visa investigar o Processo de Craqueamento Termocatalítico do Óleo de Buriti (Mauritia flexuosa L.), óleo de palma (Elaeis guineensis) e sabão de óleo de buriti, considerando a transformação dos óleos vegetais e sabões via craqueamento termocatalítico em biocombustíveis, utilizando-se Na2CO3 (Carbonato de Sódio), CaCO3 (Carbonato de Cálcio),CaO (óxido de cálcio) e Zeólitas Ácidas (HZSM-5) como catalisadores,as temperaturas de 420, 450 e 480 °C.O fruto de Buriti (Mauritia flexuosa L.) foi coletado e extraído óleo da polpa, em seguida este óleo foi caracterizado em relação Índice de Acidez, Índice de saponificação, Viscosidade Cinemática, Densidade , Índice de Refração e análise de CHN.Para testes preliminares foi utilizado o óleo de palma refinado e neutralizado portanto eles não foram caracterizados.O sabão de buriti foi preparado em laboratório com hidróxido de potássio e hidróxido de sódio e armazenados para pirólise térmica.Os catalisadores também foram caracterizados com relação ao infravermelho,Ressonância Magnética Nuclear de 29Si e 27Al, difração de raio X ,análise térmica, análise química e TPD de Amônia .No processo de craqueamento termocatalítico os produtos líquidos produzidos foram analisados quanto aos parâmetros: rendimento, índice de acidez, espectro de infravermelho, espectro de RMN e análise de CHN em seguida foram caracterizados com relação à densidade e viscosidade cinemática. No entanto, com relação ao índice de acidez dos produtos líquidos, somente os catalisadores básicos produziram craqueados com valores aceitáveis para utilização como combustível. A partir dos resultados verificou-se a eficiência dos catalisadores no qual o catalisador carbonato de sódio forneceu produtos de baixa acidez e com boas características para uso como combustível.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A large number of samples of nonlithified and lithified sediments from Leg 93 sites were analyzed for their contents of organic carbon and calcium carbonate. An average of two samples was selected from every core for carbonate determination; organic carbon was measured in most of these samples. Nearly all of these analyses were performed on board Glomar Challenger for samples from Sites 603 and 604. Site 605 samples, plus some of the deeper samples from Hole 603B, were analyzed at the University of Michigan. The procedures used in both cases were virtually the same, and their results compared well. Organic carbon analyses were done using a Hewlett- Packard 185-B CHN Analyzer. Portions of samples selected for calcium carbonate determinations were treated with dilute HC1 to remove carbonate, washed with deionized water, and dried at 110°C. A Cahn Electrobalance was used to weight 20-mg samples of sediment for CHN analysis. Samples were combusted at 1050°C in the presence of an oxidant, and the volumes of the evolved gases determined as measures of the C, H, and N contents of sediment organic matter. Areas of gas peaks were determined and compared to those of rock standards of known carbon and nitrogen contents. These values were used to standardize instrument response so that C/N atomic ratios could be reported. Organic carbon concentrations were calculated on the basis of sediment dry weight. Hydrogen elemental analysis with the procedure used is untrustworthy because of the variable amounts of clay minerals and their hydrates, hence hydrogen values are not reported for samples analyzed by this method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This master thesis aims at developing a new methodology for thermochemical degradation of dry coconut fiber (dp = 0.25mm) using laboratory rotating cylinder reactor with the goal of producing bio-oil. The biomass was characterized by infrared spectroscopy with Fourier transform FTIR, thermogravimetric analysis TG, with evaluation of activation energy the in non-isothermal regime with heating rates of 5 and 10 °C/min, differential themogravimetric analysis DTG, sweeping electron microscopy SEM, higher heating value - HHV, immediate analysis such as evaluated all the amounts of its main constituents, i.e., lignin, cellulose and hemicelluloses. In the process, it was evaluated: reaction temperature (450, 500 and 550oC), carrier gas flow rate (50 and 100 cm³/min) and spin speed (20 and 25 Hz) to condensate the bio-oil. The feed rate of biomass (540 g/h), the rotation of the rotating cylinder (33.7 rpm) and reaction time (30 33 min) were constant. The phases obtained from the process of pyrolysis of dry coconut fiber were bio-oil, char and the gas phase non-condensed. A macroscopic mass balance was applied based on the weight of each phase to evaluate their yield. The highest yield of 20% was obtained from the following conditions: temperature of 500oC, inert gas flow of 100 cm³/min and spin speed of 20 Hz. In that condition, the yield in char was 24.3%, non-condensable gas phase was 37.6% and losses of approximately 22.6%. The following physicochemical properties: density, viscosity, pH, higher heating value, char content, FTIR and CHN analysis were evaluated. The sample obtained in the best operational condition was subjected to a qualitative chromatographic analysis aiming to know the constituents of the produced bio-oil, which were: phenol followed by sirigol, acetovanilona and vinyl guaiacol. The solid phase (char) was characterized through an immediate analysis (evaluation of moisture, volatiles, ashes and fixed carbon), higher heating value and FTIR. The non-condensing gas phase presented as main constituents CO2, CO and H2. The results were compared to the ones mentioned by the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study presents the results of high-resolution sedimentological and clay mineralogical investigations on sediments from ODP Sites 908A and 909AlC located in the central Fram Strait. The objective was to reconstruct the paleoclimate and paleoceanography of the high northern latitudes since the middle Miocene. The sediments are characterised in particular by a distinctive input of ice-rafted material, which most probably occurs since 6 Ma and very likely since 15 Ma. A change in the source area at 1 1.2 Ma is clearly marked by variations within clay mineral composition and increasing accumulation rates. This is interpreted as a result of an increase in water mass exchange through the Fram Strait. A further period of increasing exchange between 4-3 Ma is identified by granulometric investigations and points to a synchronous intensification of deep water production in the North Atlantic during this time interval. A comparison of the components of coarse and clay fraction clearly shows that both are not delivered by the Same transport process. The input of the clay fraction can be related to transport mechanisms through sea ice and glaciers and very likely also through oceanic currents. A reconstruction of source areas for clay minerals is possible only with some restrictions. High smectite contents in middle and late Miocene sediments indicate a background signal produced by soil formation together with sediment input, possibly originating from the Greenland- Scotland Ridge. The applicability of clay mineral distribution as a climate proxy for the high northern latitudes can be confirmed. Based on a comparison of sediments from Site 909C, characterised by the smectite/illite and chlorite ratio, with regional and global climatic records (oxygen isotopes), a middle Miocene cooling phase between 14.8-14.6 Ma can be proposed. A further cooling phase between 10-9 Ma clearly shows similarities in its Progress toward drastic decrease in carbonate sedimentation and preservation in the eastern equatorial Pacific. The modification in sea water and atmosphere chemistry may represent a possible link due to the built-up of equatorial carbonate platforms. Between 4.8-4.6 Ma clay mineral distribution indicates a distinct cooling trend in the Fram Strait region. This is not accompanied by relevant glaciation, which would otherwise be indicated by the coarse fraction. The intensification of glaciation in the northern hemisphere is distinctly documented by a rapid increase of illite and chlorite starting from 3.3 Ma, which corresponds to oxygen isotope data trends from North Atlantic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A multivariable approach utilising bulk sediment, planktonic Foraminifera and siliceous phytoplankton has been used to reconstruct rapid variations in palaeoproductivity in the Peru-Chile Current System off northern Chile for the past 19000 cal. yr. During the early deglaciation (19000-16000 cal. yr BP), our data point to strongest upwelling intensity and highest productivity of the past 19 000 cal. yr. The late deglaciation (16000-13000 cal. yr BP) is characterised by a major change in the oceanographic setting, warmer water masses and weaker upwelling at the study site. Lowest productivity and weakest upwelling intensity are observed from the early to the middle Holocene (13000-4000 cal. yr BP), and the beginning of the late Holocene (<4000 cal. yr BP) is marked by increasing productivity, mainly driven by silicate-producing organisms. Changes in the productivity and upwelling intensity in our record may have resulted from a large-scale compression and/or displacement of the South Pacific subtropical gyre during more productive periods, in line with a northward extension of the Antarctic Circumpolar Current and increased advection of Antarctic water masses with the Peru-Chile Current. The corresponding increase in hemispheric thermal gradient and wind stress induced stronger upwelling. During the periods of lower productivity, this scenario probably reversed.