922 resultados para CHALCONE SYNTHASE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have identified in apple (Malus × domestica) three chalcone synthase (CHS) genes. In order to understand the functional redundancy of this gene family RNA interference knockout lines were generated where all three of these genes were down-regulated. These lines had no detectable anthocyanins and radically reduced concentrations of dihydrochalcones and flavonoids. Surprisingly, down-regulation of CHS also led to major changes in plant development, resulting in plants with shortened internode lengths, smaller leaves and a greatly reduced growth rate. Microscopic analysis revealed that these phenotypic changes extended down to the cellular level, with CHS-silenced lines showing aberrant cellular organisation in the leaves. Fruit collected from one CHS-silenced line was smaller than the 'Royal Gala' controls, lacked flavonoids in the skin and flesh and also had changes in cell morphology. Auxin transport experiments showed increased rates of auxin transport in a CHS-silenced line compared with the 'Royal Gala' control. As flavonoids are well known to be key modulators of auxin transport, we hypothesise that the removal of almost all flavonoids from the plant by CHS silencing creates a vastly altered environment for auxin transport to occur and results in the observed changes in growth and development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The introduction of chalcone synthase A transgenes into petunia plants can result in degradation of chalcone synthase A RNAs and loss of chalcone synthase, a process called cosuppression or post-transcriptional gene silencing. Here we show that the RNA degradation is associated with changes in premRNA processing, i.e. loss of tissue specificity in transcript cleavage patterns, accumulation of unspliced molecules, and use of template-specific secondary poly(A) sites. These changes can also be observed at a lower level in leaves but not flowers of nontransgenic petunias. Based on this, a model is presented of how transgenes may disturb the carefully evolved, developmentally controlled post-transcriptional regulation of chalcone synthase gene expression by influencing the survival rate of the endogenous and their own mRNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Petunia plants that exhibit a white-flowering phenotype as a consequence of chalcone synthase transgene-induced silencing occasionally give rise to revertant branches that produce flowers with wild-type pigmentation. Transcription run-on assays confirmed that the production of white flowers is caused by post-transcriptional gene silencing (PTGS), and indicated that transgene transcription is repressed in the revertant plants, providing evidence that induction of PTGS depends on the transcription rate. Transcriptional repression of the transgene was associated with cytosine methylation at CpG, CpNpG and CpNpN sites, and the expression was restored by treatment with either 5-azacytidine or trichostatin A. These results demonstrate that epigenetic changes occurred in the PTGS line, and these changes interfere with the initiation of transgene transcription, leading to a reversion of the PTGS phenotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mobile element dynamics in seven alleles of the chalcone synthase D locus (CHS-D) of the common morning glory (Ipomoea purpurea) are analyzed in the context of synonymous nucleotide sequence distances for CHS-D exons. By using a nucleotide sequence of CHS-D from the sister species Ipomoea nil (Japanese morning glory [Johzuka-Hisatomi, Y., Hoshino, A., Mori, T., Habu, Y. & Iida, S. (1999) Genes Genet. Syst. 74, 141–147], it is also possible to determine the relative frequency of insertion and loss of elements within the CHS-D locus between these two species. At least four different types of transposable elements exist upstream of the coding region, or within the single intron of the CHS-D locus in I. purpurea. There are three distinct families of miniature inverted-repeat transposable elements (MITES), and some recent transpositions of Activator/Dissociation (Ac/Ds)-like elements (Tip100), of some short interspersed repetitive elements (SINEs), and of an insertion sequence (InsIpCHSD) found in the neighborhood of this locus. The data provide no compelling evidence of the transposition of the mites since the separation of I. nil and I. purpurea roughly 8 million years ago. Finally, it is shown that the number and frequency of mobile elements are highly heterogeneous among different duplicate CHS loci, suggesting that the dynamics observed at CHS-D are locus-specific.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant-specific polyketide synthase genes constitute a gene superfamily, including universal chalcone synthase [CHS; malonyl-CoA:4-coumaroyl-CoA malonyltransferase (cyclizing) (EC 2.3.1.74)] genes, sporadically distributed stilbene synthase (SS) genes, and atypical, as-yet-uncharacterized CHS-like genes. We have recently isolated from Gerbera hybrida (Asteraceae) an unusual CHS-like gene, GCHS2, which codes for an enzyme with structural and enzymatic properties as well as ontogenetic distribution distinct from both CHS and SS. Here, we show that the GCHS2-like function is encoded in the Gerbera genome by a family of at least three transcriptionally active genes. Conservation within the GCHS2 family was exploited with selective PCR to study the occurrence of GCHS2-like genes in other Asteraceae. Parsimony analysis of the amplified sequences together with CHS-like genes isolated from other taxa of angiosperm subclass Asteridae suggests that GCHS2 has evolved from CHS via a gene duplication event that occurred before the diversification of the Asteraceae. Enzyme activity analysis of proteins produced in vitro indicates that the GCHS2 reaction is a non-SS variant of the CHS reaction, with both different substrate specificity (to benzoyl-CoA) and a truncated catalytic profile. Together with the recent results of Durbin et al. [Durbin, M. L., Learn, G. H., Jr., Huttley, G. A. & Clegg, M. T. (1995) Proc. Natl. Acad. Sci. USA 92, 3338-3342], our study confirms a gene duplication-based model that explains how various related functions have arisen from CHS during plant evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolution of the chalcone synthase [CHS; malonyl-CoA:4-coumaroyl-CoA malonyltransferase (cyclizing), EC 2.3.1.74] multigene family in the genus Ipomoea is explored. Thirteen CHS genes from seven Ipomoea species (family Convolvulaceae) were sequenced--three from genomic clones and the remainder from PCR amplification with primers designed from the 5' flanking region and the end of the 3' coding region of Ipomoea purpurea Roth. Analysis of the data indicates a duplication of CHS that predates the divergence of the Ipomoea species in this study. The Ipomoea CHS genes are among the most rapidly evolving of the CHS genes sequenced to date. The CHS genes in this study are most closely related to the Petunia CHS-B gene, which is also rapidly evolving and highly divergent from the rest of the Petunia CHS sequences.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is known that 22-nucleotide (nt) microRNAs (miRNAs) derived from asymmetric duplexes trigger phased small-interfering RNA (phasiRNA) production from complementary targets. Here we investigate the efficacy of 22-nt artificial miRNA (amiRNA)-mediated RNA silencing relative to conventional hairpin RNA (hpRNA) and 21-nt amiRNA-mediated RNA silencing. CHALCONE SYNTHASE (CHS) was selected as a target in Arabidopsis thaliana due to the obvious and non-lethal loss of anthocyanin accumulation upon widespread RNA silencing. Over-expression of CHS in the pap1-D background facilitated visual detection of both local and systemic RNA silencing. RNA silencing was initiated in leaf tissues from hpRNA and amiRNA plant expression vectors under the control of an Arabidopsis RuBisCo small subunit 1A promoter (SSU). In this system, hpRNA expression triggered CHS silencing in most leaf tissues but not in roots or seed coats. Similarly, 21-nt amiRNA expression from symmetric miRNA/miRNA* duplexes triggered CHS silencing in all leaf tissues but not in roots or seed coats. However, 22-nt amiRNA expression from an asymmetric duplex triggered CHS silencing in all tissues, including roots and seed coats, in the majority of plant lines. This widespread CHS silencing required RNA-DEPENDENT RNA POLYMERASE6-mediated accumulation of phasiRNAs from the endogenous CHS transcript. These results demonstrate the efficacy of asymmetric 22-nt amiRNA-directed RNA silencing and associated phasiRNA production and activity, in mediating widespread RNA silencing of an endogenous target gene. Asymmetric 22-nt amiRNA-directed RNA silencing requires little modification of existing amiRNA technology and is expected to be effective in suppressing other genes and/or members of gene families.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plants produce a vast array of phenolic compounds which are essential for their survival on land. One major class of polyphenols are the flavonoids and their formation is dependent on the enzyme chalcone synthase (CHS). In a recent study we silenced the CHS genes of apple (Malus × domestica Borkh.) and observed a loss of pigmentation in the fruit skin, flowers and stems. More surprisingly, highly silenced lines were significantly reduced in size, with small leaves and shortened internode lengths. Chemical analysis also revealed that the transgenic shoots contained greatly reduced concentrations of flavonoids which are known to modulate auxin flow. An auxin transport study verified this, with an increased auxin transport in the CHS-silenced lines. Overall, these findings suggest that auxin transport in apple has adapted to take place in the presence of high endogenous concentrations of flavonoids. Removal of these compounds therefore results in abnormal auxin movement and a highly disrupted growth pattern. © 2013 Landes Bioscience.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The expression of transgenes in plant genomes can be inhibited by either transcriptional gene silencing or posttranscriptional gene silencing (PTGS). Overexpression of the chalcone synthase-A (CHS-A) transgene triggers PTGS of CHS-A and thus results in loss of flower pigmentation in petunia. We previously demonstrated that epigenetic inactivation of CHS-A transgene transcription leads to a reversion of the PTGS phenotype. Although neomycin phosphotransferase II (nptII), a marker gene co-introduced into the genome with the CHS-A transgene, is not normally silenced in petunia, even when CHS-A is silenced, here we found that nptII was silenced in a petunia line in which CHS-A PTGS was induced, but not in the revertant plants that had no PTGS of CHS-A. Transcriptional activity, accumulation of short interfering RNAs, and restoration of mRNA level after infection with viruses that had suppressor proteins of gene silencing indicated that the mechanism for nptII silencing was posttranscriptional. Read-through transcripts of the CHS-A gene toward the nptII gene were detected. Deep-sequencing analysis revealed a striking difference between the predominant size class of small RNAs produced from the read-through transcripts (22 nt) and that from the CHS-A RNAs (21 nt). These results implicate the involvement of read-through transcription and distinct phases of RNA degradation in the coincident PTGS of linked transgenes and provide new insights into the destabilization of transgene expression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Mango fruits contain a broad spectrum of phenolic compounds which impart potential health benefits; their biosynthesis is catalysed by enzymes in the phenylpropanoid-flavonoid (PF) pathway. The aim of this study was to reveal the variability in genes involved in the PF pathway in three different mango varieties Mangifera indica L., a member of the family Anacardiaceae: Kensington Pride (KP), Irwin (IW) and Nam Doc Mai (NDM) and to determine associations with gene expression and mango flavonoid profiles. Results: A close evolutionary relationship between mango genes and those from the woody species poplar of the Salicaceae family (Populus trichocarpa) and grape of the Vitaceae family (Vitis vinifera), was revealed through phylogenetic analysis of PF pathway genes. We discovered 145 SNPs in total within coding sequences with an average frequency of one SNP every 316bp. Variety IW had the highest SNP frequency (one SNP every 258bp) while KP and NDM had similar frequencies (one SNP every 369bp and 360bp, respectively). The position in the PF pathway appeared to influence the extent of genetic diversity of the encoded enzymes. The entry point enzymes phenylalanine lyase (PAL), cinnamate 4-mono-oxygenase (C4H) and chalcone synthase (CHS) had low levels of SNP diversity in their coding sequences, whereas anthocyanidin reductase (ANR) showed the highest SNP frequency followed by flavonoid 3'-hydroxylase (F3'H). Quantitative PCR revealed characteristic patterns of gene expression that differed between mango peel and flesh, and between varieties. Conclusions: The combination of mango expressed sequence tags and availability of well-established reference PF biosynthetic genes from other plant species allowed the identification of coding sequences of genes that may lead to the formation of important flavonoid compounds in mango fruits and facilitated characterisation of single nucleotide polymorphisms between varieties. We discovered an association between the extent of sequence variation and position in the pathway for up-stream genes. The high expression of PAL, C4H and CHS genes in mango peel compared to flesh is associated with high amounts of total phenolic contents in peels, which suggest that these genes have an influence on total flavonoid levels in mango fruit peel and flesh. In addition, the particularly high expression levels of ANR in KP and NDM peels compared to IW peel and the significant accumulation of its product epicatechin gallate (ECG) in those extracts reflects the rate-limiting role of ANR on ECG biosynthesis in mango. © 2015 Hoang et al.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rhizoctonia spp. are ubiquitous soil inhabiting fungi that enter into pathogenic or symbiotic associations with plants. In general Rhizoctonia spp. are regarded as plant pathogenic fungi and many cause root rot and other plant diseases which results in considerable economic losses both in agriculture and forestry. Many Rhizoctonia strains enter into symbiotic mycorrhizal associations with orchids and some hypovirulent strains are promising biocontrol candidates in preventing host plant infection by pathogenic Rhizoctonia strains. This work focuses on uni- and binucleate Rhizoctonia (respectively UNR and BNR) strains belonging to the teleomorphic genus Ceratobasidium, but multinucleate Rhizoctonia (MNR) belonging to teleomorphic genus Thanatephorus and ectomycorrhizal fungal species, such as Suillus bovinus, were also included in DNA probe development work. Strain specific probes were developed to target rDNA ITS (internal transcribed spacer) sequences (ITS1, 5.8S and ITS2) and applied in Southern dot blot and liquid hybridization assays. Liquid hybridization was more sensitive and the size of the hybridized PCR products could be detected simultaneously, but the advantage in Southern hybridization was that sample DNA could be used without additional PCR amplification. The impacts of four Finnish BNR Ceratorhiza sp. strains 251, 266, 268 and 269 were investigated on Scot pine (Pinus sylvestris) seedling growth, and the infection biology and infection levels were microscopically examined following tryphan blue staining of infected roots. All BNR strains enhanced early seedling growth and affected the root architecture, while the infection levels remained low. The fungal infection was restricted to the outer cortical regions of long roots and typical monilioid cells detected with strain 268. The interactions of pathogenic UNR Ceratobasidium bicorne strain 1983-111/1N, and endophytic BNR Ceratorhiza sp. strain 268 were studied in single or dual inoculated Scots pine roots. The fungal infection levels and host defence-gene activity of nine transcripts [phenylalanine ammonia lyase (pal1), silbene synthase (STS), chalcone synthase (CHS), short-root specific peroxidase (Psyp1), antimicrobial peptide gene (Sp-AMP), rapidly elicited defence-related gene (PsACRE), germin-like protein (PsGER1), CuZn- superoxide dismutase (SOD), and dehydrin-like protein (dhy-like)] were measured from differentially treated and un-treated control roots by quantitative real time PCR (qRT-PCR). The infection level of pathogenic UNR was restricted in BNR- pre-inoculated Scots pine roots, while UNR was more competitive in simultaneous dual infection. The STS transcript was highly up-regulated in all treated roots, while CHS, pal1, and Psyp1 transcripts were more moderately activated. No significant activity of Sp-AMP, PsACRE, PsGER1, SOD, or dhy-like transcripts were detected compared to control roots. The integrated experiments presented, provide tools to assist in the future detection of these fungi in the environment and to understand the host infection biology and defence, and relationships between these interacting fungi in roots and soils. This study further confirms the complexity of the Rhizoctonia group both phylogenetically and in their infection biology and plant host specificity. The knowledge obtained could be applied in integrated forestry nursery management programmes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plants produce a diversity of secondary metabolites, i.e., low-molecular-weight compounds that have primarily ecological functions in plants. The flavonoid pathway is one of the most studied biosynthetic pathways in plants. In order to understand biosynthetic pathways fully, it is necessary to isolate and purify the enzymes of the pathways to study individual steps and to study the regulatory genes of the pathways. Chalcone synthases are key enzymes in the formation of several groups of flavonoids, including anthocyanins. In this study, a new chalcone synthase enzyme (GCHS4), which may be one of the main contributors to flower colour, was characterised from the ornamental plant Gerbera hybrida. In addition, four chalcone synthase-like genes and enzymes (GCHS17, GCHS17b, GCHS26 and GCHS26b) were studied. Spatial expression of the polyketide synthase gene family in gerbera was also analysed with quantitative RT-PCR from 12 tissues, including several developmental stages and flower types. A previously identified MYB transcription factor from gerbera, GMYB10, which regulates the anthocyanin pathway, was transferred to gerbera and the phenotypes were analysed. Total anthocyanin content and anthocyanidin profiles of control and transgenic samples were compared spectrophotometrically and with HPLC. The overexpression of GMYB10 alone was able to change anthocyanin pigmentation: cyanidin pigmentation was induced and pelargonidin pigmentation was increased. The gerbera 9K cDNA microarray was used to compare the gene expression profiles of transgenic tissues against the corresponding control tissues to reveal putative target genes for GMYB10. GMYB10 overexpression affected the expression of both early and late biosynthetic genes in anthocyanin-accumulating transgenic tissues, including the newly isolated gene GCHS4. Two new MYB domain factors, named as GMYB11 and GMYB12, were also upregulated. Gene transfer is not only a powerful tool for basic research, but also for plant breeding. However, crop improvement by genetic modification (GM) remains controversial, at least in Europe. Many of the concerns relating to both human health and to ecological impacts relate to changes in the secondary metabolites of GM crops. In the second part of this study, qualitative and quantitative differences in cytotoxicity and metabolic fingerprints between 225 genetically modified Gerbera hybrida lines and 42 non-GM Gerbera varieties were compared. There was no evidence for any major qualitative and quantitative changes between the GM lines and non-GM varieties. The developed cell viability assays offer also a model scheme for cell-based cytotoxicity screening of a large variety of GM plants in standardized conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

第一部分:青蒿开花与青蒿素生物合成相关性的研究 青蒿素是从中药青蒿中分离出的倍半萜内酯化合物,目前是世界上唯一有效的治疗脑型疟疾和抗氯喹恶性疟疾的药物。青蒿植株中青蒿素含量在开花期最高,但是目前尚不清楚开花与青蒿素生物合成的关系。为此,我们用光周期(短日照)诱导青蒿提前开花,不仅同时获得了开花与不开花的青蒿植株,而且还成功地在同一植株上诱导部分分枝开花,另一部分分枝保持营养生长状态。这一实验体系为研究青蒿开花与青蒿素生物合成的相关性奠定了基础。实验结果表明,开花与不开花青蒿植株青蒿素含量有明显差异。开花植株的青蒿素含量在前2周内逐渐提高,第三周(开花期)达到最高,并保持一周左右,在随后的2周内下降。青蒿植株开花后,叶片便开始老化变黄,逐渐死亡。未开花青蒿植株的青蒿素含量动态在前三周内与开花植株类似,但是这种高青蒿素含量状态能保持较长时间,至少在随后的2周内没有下降。未开花植株的叶片依然保持绿色。这一结果表明,开花不是导致青蒿素含量提高的直接原因。 扫描电镜观察结果表明,幼嫩叶片上的毛状腺体( trichrome)结构是完整的,而在老化的叶片上,则观察到了相当比例(40-50%)破损的腺体。这可能是导致青蒿素含量下降的直接原因。 不同生态型青蒿对光周期的反应是不同的。在北京地区,本地青蒿在8月初便开始开花,而来自四川武陵的青蒿则要到9月份才能开花。根据这一特性,采用“南蒿北栽”的方法,能够使青蒿保持较长时间的营养生长状态,延长适于采收的时间。 第二部分:金丝桃和百金花二苯甲酮合酶基因的克隆,异源表达及功能分析 植物次生代谢物山屯酮( Xanthones)仅存在于龙胆科和藤黄科植物中。它们具有抑制单胺氧化酶,细胞毒素及抗肿瘤活性。 含有1 3个碳原子的二苯甲酮是山屯酮生物合成的中间产物,是由二苯甲酮合酶催化合成的,这一反应是山屯酮生物合成的关键步骤。二苯甲酮合酶已经在金丝桃和百金花细胞悬浮培养系统中检测到,并进行了细致的生化水平上的研究。本研究是在上述研究的基础上,进一步克隆该酶的基因,并进行异源表达及功能分析工作,以便更好地了解和调控山屯酮的生物合成。 用PCR和RT-PCR技术,从金丝桃cDNA文库和逆转录产物中分别克隆到一个基因HBPS1和HBPS2,从百金花cDNA文库中克隆到一个基因CBPS1。HBPS1含有1402个碱基,其开放阅读框架编码390个氨基酸,分子量为42.7 kDa,等电点为6.55。HBPS2含有1398个碱基,其开放阅读框架编码395个氨基酸,分子量为42.8 kDa,等电点为5.78。CBPS1含有1383个碱基,其开放阅读框架编码389个氨基酸,分子量为42.7 kDa,等电点为7.88。与GenBank中序列同源性比较结果表明:在氨基酸水平上,HBPS1与茶(Camellia sinensis)查尔酮合酶的同源性高达92%,HBPS2与萝卜(Raphanus sativus)查尔酮合酶的同源性为64%,CBPS1与茶(Camellia sinensis)查尔酮合酶的同源性为71%。HBPS1与HBPS2的同源性仅为62%。 将三个新克隆的基因的ORF整合到载体pGEX-G上的谷胱甘肽还原酶S基因下游,构建成转化质粒,并在大肠杆菌中诱导表达。结果表明,这三个基因的ORF片段均能被表达成约68 kDa的产物,这与期望的结果一致。 活性检测结果表明,HBPS1是查尔酮合成酶,其底物为香豆酰辅酶A和丙二酸单酰辅酶A,对这两种底物的亲和性KM分别为:香豆酰辅酶A 2.8μM,丙二酸单酰辅酶A,11.2μM。最适反应条件是350C,pH7.0,DTT浓度10 μM。 HBPS2是二苯甲酮合酶,其底物是苯甲丙氨酰辅酶A,和丙二酸单酰辅酶A,对这两种底物的亲和性KM分别为:苯甲丙氨酰辅酶A 2.4 μM,丙二酸单酰辅酶A 9.6μM。最适反应条件是350C,pH 6.5,DTT浓度50 μM。而CBPS1则没有检测到任何活性。从同一种植物中同时获得了查尔酮合酶和二苯甲酮合酶,对研究这两种十分相近的酶的差异表达,酶促反应机制等问题将非常有利。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

水母雪莲(Saussurea medusa Maxim)为菊科凤毛菊属植物,是名贵中药材。为解决雪莲资源匮乏,我们实验室通过植物组织培养技术,成功的建立起水母雪莲细胞和毛状根体系。通过对它的药理实验及化学成分分析,主要成分为黄酮类物质和紫丁香甙单体。为了进一步提高这些物质在水母雪莲培养物中的含量,本文开展通过添加外源诱导子手段来调控水母雪莲次生代谢合成途径。 利用水杨酸(SA)和酵母提取物(YE)作为外源诱导子,添加到水母雪莲细胞系和毛状根系培养基中,研究诱导子不同添加浓度和不同添加时间对水母莲细胞系和毛状根系的生长及次生物质合成的诱导效应。实验结果发现:对于细胞系来说,SA比YE的诱导效果要好,低浓度SA处理时,不仅能促进细胞的生长,还能提高水母雪莲细胞中黄酮化合物和紫丁香甙的含量。其中,在细胞生长周期的第6天添加终浓度为20 μM的SA,诱导效果表现最佳。在此条件下,细胞内总黄酮产量达到532 mg/l,紫丁香甙为630 mg/l,分别比对照提高了130%,和150%。对于毛状根体系来说,SA和YE生长早期添加会抑制毛状根生长。总体上,YE的诱导效果比SA明显。在第10天添加终浓度为40 μg/ml的YE,总黄酮达到741 mg/l,紫丁香甙达到303 mg/l,分别是对照的2.8和2.5倍。 同时研究了20 μM和100 μM SA诱导下,黄酮合成途径中相关酶的变化。发现,低浓度的SA能在短时间内诱导CHS和CHI表达,24h后PAL酶活性升高到对照的7.5倍,而48 h总黄酮的含量检测到最高值。因此可以初步断定,SA诱导苯基苯丙烷类物质的积累与CHS和CHI表达,PAL酶活性提高有关。 另外,从水母雪莲cDNA中克隆到雪莲黄酮合成途径的第一个关键酶—查耳酮合成酶基因(SmCHS)全长cDNA。此cDNA序列全长为1313bp,其编码的蛋白为389个氨基酸,推测的氨基酸序列与许多物种都高度同源,同源性高达88%。生物信息学分析,SmCHS具有CHS-like保守结构域,其二级结构与苜蓿的CHS十分相似,且苜蓿中的CHS酶活性中心的关键氨基酸位点在SmCHS也一致对应相同,没有突变。因此可以初步推测这个SmCHS应该具有查耳酮合成酶功能。并进一步构建SmCHS植物表达载体,转化拟南芥chs突变体,通过功能互补分析研究此基因的功能。由于时间关系这部分研究尚在进行中。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ⅰ 虎杖聚酮类化合物生物合成相关基因的克隆及功能分析 虎杖 (Polygonum cuspidatum Sieb. et Zucc) 属于蓼科蓼属多年生草本植物,在中国和日本民间曾被广泛用于动脉粥样硬化、高血压、咳嗽、化脓性皮肤炎以及淋病的治疗,具有祛风利湿、散瘀定痛、止咳化痰等功效。而在现代医学上最令人瞩目和具有发展前景的是其在抗肿瘤、心血管保护、抗氧化方面的作用,相关疗效主要来自于虎杖中结构迥异、种类丰富的聚酮化合物及其衍生物资源。这些聚酮类化合物主要包括蒽醌、大黄素、大黄素-甲醚、大黄酚、芪类以及类黄酮化合物等。其中,大部分聚酮类化合物生物合成途径机制尚不明确,但可以肯定的是植物类型III聚酮合酶type III polyketide synthases (PKSs) 在这些聚酮化合物的生物合成起始反应中行使着关键的作用。因此,除了我们所熟悉的类黄酮化合物、芪类化合物之外,进一步分离和分析虎杖中其它重要聚酮类化合物生物合成所涉及的类型III聚酮合酶基因的是非常值得期待的。 目前,已经有14个植物类型III PKS基因被克隆和功能分析。植物类型III PKS的共同特征包括基因结构、序列相似性、保守的活性中心、酶学性质以及共同的催化机制等。显花植物(裸子植物和被子植物)中,植物类型III PKS的基因结构绝对保守,除了一个早期报道的金鱼草(Antirrhinum majus)查尔酮合酶chalcone synthase (CHS) 含有第二个内含子外,迄今为止所有已知的植物类型III PKS基因均含有一个内含子且该内含子位置保守。有趣的是,在本研究中,两个含有3个内含子的类型III PKS基因从虎杖中被分离,且两个基因3个内含子的位置完全保守,这是三内含子类型III PKS基因首次得到分离。除了新奇的基因结构外,体外功能分析显示上述两个基因还具有特殊的酶学性质和功能。 本论文围绕上述2个三内含子基因开展了以下工作: 虎杖中一个由三内含子基因编码的新型类型III聚酮合酶 一个类型III PKS的cDNA及其相应的基因(PcPKS2)从药用植物虎杖中被克隆。序列分析结果表明,PcPKS2的开放阅读框被3个内含子分隔,这是一个出人意料的发现,因为截至到目前为止,除了金鱼草一个CHS基因外,所有已知的类型III PKS基因均在固定位置上含有一个内含子。除了特殊的基因结构外,PcPKS2显示了一些有趣的特性:(i) CHS“守卫”苯丙氨酸——Phe215和Phe265在PcPKS2中双双缺失,它们分别被亮氨酸和半胱氨酸取代;(ii) 体外功能分析结果表明,当酶促反应体系的pH值为6.5-8.5时,大肠杆菌中过表达的重组PcPKS2高效地合成丁烯酮非环化产物——4-香豆酰甘油酸内酯(4-coumaroyltriacetic acid lactone (CTAL))为主产物,而丙烯酮非环化产物bis-noryangonin (BNY) 以及苯亚甲基丙酮为副产物;而当酶促反应体系的pH值为9.0时,PcPKS2高效地合成苯亚甲基丙酮为主产物,而CTAL、BNY为副产物。另外,除了上述3种产物外,在不同的pH条件下,还有痕量的柚皮素查尔酮能被检测到。此外,在4-香豆酰辅酶A(4-coumaroyl-CoA)的类似化合物中,除了4-香豆酰辅酶A外,只有feruloyl-CoA能够被PcPKS2接受作为起始底物。PcPKS2不接受脂肪酰辅酶A——异丁酰基辅酶A(isobutyryl-CoA)、异戊酰基辅酶A(isovaleryl-CoA)以及乙酰辅酶A(acetyl-CoA)作为起始底物。Southern blot杂交结果表明,在虎杖基因组中存在2-4个PcPKS2基因的拷贝。Northern blot杂交结果表明,在根茎和幼叶中,PcPKS2表达量很高,而在根中无表达。叶中的PcPKS2的表达受病原菌诱导,但不受伤诱导。 虎杖中一个编码双功能类型III聚酮合酶的三内含子基因的鉴定 显花植物中,所有已知的类型III PKS 基因均含有一个内含子且位置绝对保守。本研究中,综合运用PCR技术,从富含聚酮类化合物的植物虎杖中克隆得到一个类型III PKS 基因(PcPKS1)及其cDNA。序列分析结果表明,PcPKS1含有3个内含子。系统发育分析结果表明,PcPKS1与其它植物的CHSs归为一类。然而,体外功能分析结果表明,当酶促反应体系pH值为7.0时,大肠杆菌中过表达的重组PcPKS1高效地合成柚皮素查尔酮(naringenin)为单一产物;而当pH值为9.0时,苯亚甲基丙酮(p-hydroxybenzalacetone)几乎为重组PcPKS1的唯一产物。后续的研究表明,与典型的CHSs相比,PcPKS1具有另外一些不同的特点:在pH值为9.0时(PcPKS1的苯亚甲基丙酮合成活性最适pH值),在4-香豆酰辅酶A的类似化合物中,只有feruloyl-CoA能够被PcPKS1接受作为起始底物。与CHSs展现出的对脂肪酰辅酶A宽泛的底物特异性不同,在不同的pH条件下,PcPKS1不接受异丁酰基辅酶A(isobutyryl-CoA)、异戊酰基辅酶A(isovaleryl-CoA)以及乙酰辅酶A(acetyl-CoA)作为起始底物。以上数据指出重组PcPKS1是一个具有查尔酮合酶(CHS)和苯亚甲基丙酮合酶(BAS)活性的双功能酶。Southern blot杂交结果表明,在虎杖基因组中存在2-4个PcPKS1基因的拷贝。Northern blot杂交结果表明,PcPKS1可能在防御病原菌和草食动物方面起着重要作用。PcPKS1和PcPKS2共同从虎杖中被分离的事实极有可能暗示了苯丁烷类化合物(phenylbutanoid)及其衍生物存在于虎杖中。 Ⅱ 高山红景天酪醇生物合成代谢途径机制研究 高山红景天(Rhodiola sachalinensis A. Bor)是景天科(Crassulaceae)红景天属多年生草本植物,作为一种适应原性中草药在中国的应用史已经超过800年。最近红景天提取物作为一种重要的商业药用制剂资源,其应用遍及欧洲、亚洲和美国,其主要治疗范围包括抗变应性和消炎,提高心理机敏性等。目前已经非常明确,红景天甙(salidroside)和甙元酪醇(tyrosol)是红景天属植物的主要功效成分,主要分布于这类植物的根中并且具有抗缺氧、抗疲劳、延缓衰老、预防紫外线辐射伤害等功效。红景天甙为酪醇8-O-β-D葡萄糖甙,是酪醇在葡萄糖基转移酶UDP-glucosyltransferase (UGT) 的催化下糖基化后形成的,可以认为是酪醇在植物体内的贮存形式。酪醇作为一种重要的活性分子,同样存在于橄榄树和葡萄酒中。 虽然已经非常明确酪醇来自于莽草酸代谢途径,然而其具体的生物合成途径及其调控仍不明确。总结以往的报道,在酪醇的生物合成上主要存在两种观点:一是酪醇可能来自于苯丙烷代谢途径产生的4-香豆酸(4-coumaric acid)前体;二是来自于酪氨酸的酪胺(tyramine)可能是酪醇生物合成的直接前体。我们的工作兴趣主要围绕着鉴别高山红景天中的酪醇生物合成途径展开: 高山红景天内源苯丙氨酸解氨酶PALrs1的过表达对红景天甙积累的影响 红景天甙是来自于药用植物高山红景天的一种适应原性新型药物,其生物合成途径可能起始于苯丙氨酸或酪氨酸。由于高山红景天野生植物资源的匮乏和相对含量很低,阐明红景天甙的生物合成途径对于增加红景天甙的供给至关重要。在我们以前的工作中,运用cDNA末端快速扩增技术(RACE),一个编码苯丙氨酸解氨酶phenylalanine ammonia-lyase (PAL)的cDNA从高山红景天中被克隆,命名为PALrs1。在本研究中,PALrs1置于35S启动子+Ω增强子序列的控制下通过农杆菌(Agrobacterium tumefaciens)介导法转化回高山红景天。PCR 和 PCR–Southern blot分析结果表明,PALrs1已经整合到了转基因植物的基因组上。Northern blot杂交结果表明,PALrs1已经获得在转录水平上的高水平表达。与预期的结果相同,高效液相色谱High-performance liquid chromatography (HPLC)测定结果显示PALrs1的过表达引起4-香豆酸含量增长3.3倍。然而,与之相反的是,酪醇和红景天甙含量与对照相比反而分别下降4.7和7.7倍。此外,我们发现PALrs1的过表达造成酪氨酸含量下降2.6倍。这些数据暗示着PALrs1的过表达和4-香豆酸的积累并不能促进酪醇的生物合成。酪醇,作为一种苯乙烷类衍生物并非来自苯丙氨酸,而酪氨酸含量的下降则极有可能是酪醇生物合成和红景天甙积累大规模下降的直接原因。