993 resultados para CESIUM ATOMS
Resumo:
The shifts in the four-body recombination peaks, due to an effective range correction to the zero-range model close to the unitary limit, are obtained and used to extract the corresponding effective range of a given atomic system. The approach is applied to an ultracold gas of cesium atoms close to broad Feshbach resonances, where deviations of experimental values from universal model predictions are associated with effective range corrections. The effective range correction is extracted with a weighted average given by 3.9±0.8R vdW, where RvdW is the van der Waals length scale, which is consistent with the van der Waals potential tail for the Cs2 system. The method can be generally applied to other cold atom experimental setups to determine the contribution of the effective range to the tetramer dissociation position. © 2013 American Physical Society.
Resumo:
The effects of trimer continuum resonances are considered in the three-body recombination rate of a Bose system at finite energies for large and negative two-body scattering lengths (a). The thermal average of the rate allows to apply our formula to Bose gases at ultra-low temperatures. We found a good quantitative description of the experimental three-body recombination length of cesium atoms to deeply bound molecules up to 500 nK. Consistent with the experimental data, the increase of the temperature moves the resonance peak of the three-body recombination rate to lower values of vertical bar a vertical bar exhibiting a saturation behavior. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
In this thesis, I present the realization of a fiber-optical interface using optically trapped cesium atoms, which is an efficient tool for coupling light and atoms. The basic principle of the presented scheme relies on the trapping of neutral cesium atoms in a two-color evanescent field surrounding a nanofiber. The strong confinement of the fiber guided light, which also protrudes outside the nanofiber, provides strong confinement of the atoms as well as efficient coupling to near-resonant light propagating through the fiber. In chapter 1, the necessary physical and mathematical background describing the propagation of light in an optical fiber is presented. The exact solution of Maxwell’s equations allows us to model fiber-guided light fields which give rise to the trapping potentials and the atom-light coupling in the close vicinity of a nanofiber. Chapter 2 gives the theoretical background of light-atom interaction. A quantum mechanical model of the light-induced shifts of the relevant atomic levels is reviewed, which allows us to quantify the perturbation of the atomic states due to the presence of the trapping light-fields. The experimental realization of the fiber-based atom trap is the focus of chapter 3. Here, I analyze the properties of the fiber-based trap in terms of the confinement of the atoms and the impact of several heating mechanisms. Furthermore, I demonstrate the transportation of the trapped atoms, as a first step towards a deterministic delivery of individual atoms. In chapter 4, I present the successful interfacing of the trapped atomic ensemble and fiber-guided light. Three different approaches are discussed, i.e., those involving the measurement of either near-resonant scattering in absorption or the emission into the guided mode of the nanofiber. In the analysis of the spectroscopic properties of the trapped ensemble we find good agreement with the prediction of theoretical model discussed in chapter 2. In addition, I introduce a non-destructive scheme for the interrogation of the atoms states, which is sensitive to phase shifts of far-detuned fiber-guided light interacting with the trapped atoms. The inherent birefringence in our system, induced by the atoms, changes the state of polarization of the probe light and can be thus detected via a Stokes vector measurement.
Resumo:
Spectroscopy of the 1S-2S transition of antihydrogen confined in a neutral atom trap and comparison with the equivalent spectral line in hydrogen will provide an accurate test of CPT symmetry and the first one in a mixed baryon-lepton system. Also, with neutral antihydrogen atoms, the gravitational interaction between matter and antimatter can be tested unperturbed by the much stronger Coulomb forces.rnAntihydrogen is regularly produced at CERN's Antiproton Decelerator by three-body-recombination (TBR) of one antiproton and two positrons. The method requires injecting antiprotons into a cloud of positrons, which raises the average temperature of the antihydrogen atoms produced way above the typical 0.5 K trap depths of neutral atom traps. Therefore only very few antihydrogen atoms can be confined at a time. Precision measurements, like laser spectroscopy, will greatly benefit from larger numbers of simultaneously trapped antihydrogen atoms.rnTherefore, the ATRAP collaboration developed a different production method that has the potential to create much larger numbers of cold, trappable antihydrogen atoms. Positrons and antiprotons are stored and cooled in a Penning trap in close proximity. Laser excited cesium atoms collide with the positrons, forming Rydberg positronium, a bound state of an electron and a positron. The positronium atoms are no longer confined by the electric potentials of the Penning trap and some drift into the neighboring cloud of antiprotons where, in a second charge exchange collision, they form antihydrogen. The antiprotons remain at rest during the entire process, so much larger numbers of trappable antihydrogen atoms can be produced. Laser excitation is necessary to increase the efficiency of the process since the cross sections for charge-exchange collisions scale with the fourth power of the principal quantum number n.rnThis method, named double charge-exchange, was demonstrated by ATRAP in 2004. Since then, ATRAP constructed a new combined Penning Ioffe trap and a new laser system. The goal of this thesis was to implement the double charge-exchange method in this new apparatus and increase the number of antihydrogen atoms produced.rnCompared to our previous experiment, we could raise the numbers of positronium and antihydrogen atoms produced by two orders of magnitude. Most of this gain is due to the larger positron and antiproton plasmas available by now, but we could also achieve significant improvements in the efficiencies of the individual steps. We therefore showed that the double charge-exchange can produce comparable numbers of antihydrogen as the TBR method, but the fraction of cold, trappable atoms is expected to be much higher. Therefore this work is an important step towards precision measurements with trapped antihydrogen atoms.
Resumo:
A compact frequency standard based on an expanding cold (133)CS cloud is under development in our laboratory. In a first experiment, Cs cold atoms were prepared by a magneto-optical trap in a vapor cell, and a microwave antenna was used to transmit the radiation for the clock transition. The signal obtained from fluorescence of the expanding cold atoms cloud is used to lock a microwave chain. In this way the overall system stability is evaluated. A theoretical model based on a two-level system interacting with the two microwave pulses enables interpretation for the observed features, especially the poor Ramsey fringes contrast. (C) 2008 Optical Society of America.
Resumo:
We show that small amounts of 3He atoms, added to a 4He drop deposited on a flat cesium surface at zero temperature, populate bound states localized at the contact line. These edge states show up for drops large enough to develop well defined surface and bulk regions together with a contact line, and they are structurally different from the well-known Andreev states that appear at the free surface and at the liquid-solid interface of films. We illustrate the one-body density of 3He in a drop with 1000 4He atoms, and show that for a sufficiently large number of impurities the density profiles spread beyond the edge, coating both the curved drop surface and its flat base and eventually isolating it from the substrate.
Resumo:
Scattering of ortho positronium (Ps) by cesium and rubidium atoms has been investigated employing a three-Ps-state coupled-channel model with Ps(1s,2s,2p) states using a time-reversal-symmetric regularized electron-exchange model potential. We find a narrow S-wave singlet resonance at 5.057 eV of width 0.003 eV in the Ps-Rb system and at 5.067 eV of width 0.003 eV in the Ps-Cs system. Singlet P-wave resonances in both systems are found at 5.3 eV of width 0.4 eV. Singlet D-wave structures are found at 5.4 eV in both systems. The pronounced P- and D-wave resonances in these systems lead to easily detectable local minima in the low-energy elastic cross sections. We also report results for elastic and Ps-excitation cross sections for Pa scattering by Rb and Cs. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
We combine theory and experiment to investigate five-body recombination in an ultracold gas of atomic cesium at negative scattering length. A refined theoretical model, in combination with extensive laboratory tunability of the interatomic interactions, enables the five-body resonant recombination rate to be calculated and measured. The position of the new observed recombination feature agrees with a recent theoretical prediction and supports the prediction of a family of universal cluster states at negative a that are tied to an Efimov trimer.
Resumo:
Atomic charge transfer-counter polarization effects determine most of the infrared fundamental CH intensities of simple hydrocarbons, methane, ethylene, ethane, propyne, cyclopropane and allene. The quantum theory of atoms in molecules/charge-charge flux-dipole flux model predicted the values of 30 CH intensities ranging from 0 to 123 km mol(-1) with a root mean square (rms) error of only 4.2 km mol(-1) without including a specific equilibrium atomic charge term. Sums of the contributions from terms involving charge flux and/or dipole flux averaged 20.3 km mol(-1), about ten times larger than the average charge contribution of 2.0 km mol(-1). The only notable exceptions are the CH stretching and bending intensities of acetylene and two of the propyne vibrations for hydrogens bound to sp hybridized carbon atoms. Calculations were carried out at four quantum levels, MP2/6-311++G(3d,3p), MP2/cc-pVTZ, QCISD/6-311++G(3d,3p) and QCISD/cc-pVTZ. The results calculated at the QCISD level are the most accurate among the four with root mean square errors of 4.7 and 5.0 km mol(-1) for the 6-311++G(3d,3p) and cc-pVTZ basis sets. These values are close to the estimated aggregate experimental error of the hydrocarbon intensities, 4.0 km mol(-1). The atomic charge transfer-counter polarization effect is much larger than the charge effect for the results of all four quantum levels. Charge transfer-counter polarization effects are expected to also be important in vibrations of more polar molecules for which equilibrium charge contributions can be large.
Resumo:
One of the standard generalized-gradient approximations (GGAs) in use in modern electronic-structure theory [Perdew-Burke-Ernzerhof (PBE) GGA] and a recently proposed modification designed specifically for solids (PBEsol) are identified as particular members of a family of functionals taking their parameters from different properties of homogeneous or inhomogeneous electron liquids. Three further members of this family are constructed and tested, together with the original PBE and PBEsol, for atoms, molecules, and solids. We find that PBE, in spite of its popularity in solid-state physics and quantum chemistry, is not always the best performing member of the family and that PBEsol, in spite of having been constructed specifically for solids, is not the best for solids. The performance of GGAs for finite systems is found to sensitively depend on the choice of constraints stemming from infinite systems. Guidelines both for users and for developers of density functionals emerge from this work.
Resumo:
Using ab initio methods, we propose a simple and effective way to substitutionally dope graphene sheets with boron. The method consists of selectively exposing each side of the graphene sheet to different elements. We first expose one side of the membrane to boron while the other side is exposed to nitrogen. Proceeding this way, the B atoms will be spontaneously incorporated into the graphene membrane without any activation barrier. In a second step, the system should be exposed to a H-rich environment, which will remove the CN radical from the layer and form HCN, leading to a perfect substitutional doping.
Resumo:
We study a mixture of two light spin-1/2 fermionic atoms and two heavy atoms in a double-well potential. Inelastic scattering processes between both atomic species excite the heavy atoms and renormalize the tunneling rate and the interaction of the light atoms (polaron effect). The effective interaction of the light atoms changes its sign and becomes attractive for strong inelastic scattering. This is accompanied by a crossing of the energy levels from singly occupied sites at weak inelastic scattering to a doubly occupied and an empty site for stronger inelastic scattering. We are able to identify the polaron effect and the level crossing in the quantum dynamics.
Resumo:
A versatile miniature de Broglie waveguide is formed by two parallel current-carrying wires in the presence of a uniform bias field. We derive a variety of analytical expressions to describe the guide and present a quantum theory to show that it offers a remarkable range of possibilities for atom manipulation on the submicron scale. These include controlled and coherent splitting of the wave function as well as cooling, trapping, and guiding. In particular, we discuss a novel microscopic atom interferometer with the potential to be exceedingly sensitive.
Resumo:
We analyse and compare various aspects of the performance of atomic beam splitters fur two- and three-level atoms, both of which use bichromatic optical fields. We calculate the extent to which spontaneous emission degrades the sharpness of the splitting, and how it might degrade the visibility of an idealised atom interferometer which includes either beam splitting mechanism. (C) 1998 Elsevier Science B.V.
Resumo:
In a recent paper Meyer and Yeoman [Phys. Rev. Lett. 79, 2650 (1997)] have shown that the resonance fluorescence from two atoms placed in a cavity and driven by an incoherent field can produce an interference pattern with a dark center. We study the fluorescence from two coherently driven atoms in free space and show that this system can also produce an interference pattern with a dark center. This happens when the atoms are in nonequivalent positions in the driving: field, i.e., the atoms experience different intensities and phases of the driving field. We discuss the role of the interatomic interactions in this process and find that the interference pattern with a dark center results from the participation of the antisymmetric state in the dynamics of the driven two-atom system.