984 resultados para CD11b antigen
Resumo:
Background: Airway eosinophilia is considered a central event in the pathogenesis of asthma. The toxic components of eosinophils are thought to be important in inducing bronchial mucosal injury and dysfunction. Previous studies have suggested an interaction between nitric oxide (NO) and chemokines in modulating eosinophil functions, but this is still conflicting. In the present study, we have carried out functional assays (adhesion and degranulation) and flow cytometry analysis of adhesion molecules (VLA-4 and Mac-1 expression) to evaluate the interactions between NO and CC-chemokines (eotaxin and RANTES) in human eosinophils. Methods: Eosinophils were purified using a percoll gradient followed byimmunomagnetic cell separator. Cell adhesion and degranulation were evaluated by measuring eosinophil peroxidase (EPO) activity, whereas expression of Mac-1 and VLA-4 was detected using flow cytometry. Results: At 4 h incubation, both eotaxin (100 ng/ml) and RANTES (1000 ng/ml) increased by 133% and 131% eosinophil adhesion, respectively. L-NAME alone (but not D-NAME) also increased the eosinophil adhesion, but the co-incubation of L-NAME with eotaxin or RANTES did not further affect the increased adhesion seen with chemokines alone. In addition, L-NAME alone (but not D-NAME) caused a significant cell degranulation, but it did not affect the CC-chemokine-induced cell degranulation. Incubation of eosinophils with eotaxin or RANTES, in absence or presence of L-NAME, did not affect the expression of VLA-4 and Mac-1 on eosinophil surface. Eotaxin and RANTES (100 ng/ml each) also failed to elevate the cyclic GMP levels above baseline in human eosinophils. Conclusion: Eotaxin and RANTES increase the eosinophil adhesion to fibronectin-coated plates and promote cell degranulation by NO-independent mechanisms. The failure of CC-chemokines to affect VLA-4 and Mac-1 expression suggests that changes in integrin function (avidity or affinity) are rather involved in the enhanced adhesion. © 2008 Lintomen et al; licensee BioMed Central Ltd.
Resumo:
Chronic chagasic cardiomyopathy is a leading cause of heart failure in Latin American countries. About 30% of Trypanosoma cruzi-infected individuals develop this severe symptomatic form of the disease, characterized by intense inflammatory response accompanied by fibrosis in the heart.We performed an extensive microarray analysis of hearts from a mouse model of this disease and identified significant alterations in expression of ~12% of the sampled genes. Extensive up-regulations were associated with immune-inflammatory responses (chemokines, adhesion molecules, cathepsins, and major histocompatibility complex molecules) and fibrosis (extracellular matrix components, lysyl oxidase, and tissue inhibitor of metalloproteinase 1). Our results indicate potentially relevant factors involved in the pathogenesis of the disease that may provide newtherapeutic targets in chronic Chagas disease. © 2010 by the Infectious Diseases Society of America.
Resumo:
Chronic inflammatory processes close to bone often lead to loss of bone in diseases such as rheumatoid arthritis, periodontitis, loosened joint prosthesis and tooth implants. This is mainly due to local formation of bone resorbing osteoclasts which degrade bone without any subsequent coupling to new bone formation. Crucial for osteoclastogenesis is stimulation of mononuclear osteoclast progenitors by macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL) which induces their differentiation along the osteoclastic lineage and the fusion to mature, multinucleated osteoclasts. M-CSF and RANKL are produced by osteoblasts/ osteocytes and by synovial and periodontal fibroblasts and the expression is regulated by pro- and anti-inflammatory cytokines. These cytokines also regulate osteoclastic differentiation by direct effects on the progenitor cells. In the present overview, we introduce the basic concepts of osteoclast progenitor cell differentiation and summarize the current knowledge on cytokines stimulating and inhibiting osteoclastogenesis by direct and indirect mechanisms. © Informa Healthcare USA, Inc.
Resumo:
Regulatory T cells expressing the fork-head box transcription factor 3 (Foxp3) play a central role in the dominant control of immunological tolerance. Compelling evidence obtained from both animal and clinical studies have now linked the expansion and accumulation of Foxp3+ regulatory T cells associated with tumor lesions to the failure of immune-mediated tumor rejection. However, further progress of the field is hampered by the gap of knowledge regarding their phenotypic, functional, and the developmental origins in which these tumor-associated Foxp3+ regulatory T cells are derived. Here, we have characterized the general properties of tumor-associated Foxp3+ regulatory T cells and addressed the issue of tumor microenvironment mediated de-novo induction by utilizing a well known murine tumor model MCA-205 in combination with our BAC Foxp3-GFP reporter mice and OT-II TCR transgenic mice on the RAG deficient background (RAG OT-II). De-novo induction defines a distinct mechanism of converting non-regulatory precursor cells to Foxp3+ regulatory T cells in the periphery as opposed to the expansion of pre-existing regulatory T cells formed naturally during thymic T cell development. This mechanism is of particularly importance to how tumors induce tumor-antigen-specific suppressor cells to subvert anti-tumor immune responses. Our study has found that tumor-associated Foxp3+ regulatory T cells are highly activated, undergo vigorous proliferation, are more potent by in-vitro suppression assays, and express higher levels of membrane-bound TGF-β1 than non-tumor regulatory T cells. With Foxp3-GFP reporter mice or RAG OT-II TCR transgenic mice, we show that tumor tissue can induce detectable de-novo generation of Foxp3+ regulatory T cells of both polyclonal or antigen specific naïve T cells. This process was not only limited for subcutaneous tumors but for lung tumors as well. Furthermore, this process required the inducing antigen to be co-localized within the tumor tissue. Examination of tumor tissue revealed an abundance of myeloid CD11b+ antigen-presenting cells that were capable of inducing Foxp3+ regulatory T cells. Taken together, these findings elucidate the general attributes and origins of tumor-associated Foxp3+ regulatory T cells in the tumor microenvironment and in their role in the negative regulation of tumor immunity.^
Resumo:
Resistance to tick feeding has been previously shown to be an acquired, immunologically mediated phenomenon in goats, associated with cutaneous basophilia to nymphs of Amblyomma cajennense, the Cayenne tick, after repeated infestations. On the other hand, it is well known that antigen-presenting cells (APCs) play an important role in the host immune reaction to tick infestations. The most able APCs for Th cells are the well defined dendritic cells, mononuclear phagocytes and B-lymphocytes. Immunohistochemical analysis of draining lymph nodes of goats repeatedly infested with nymphs of the ixodid tick A. cajennense to search for APCs was done. Pre-scapular lymph nodes draining the tick attachment sites were collected 15 days after both the first and third infestations. Tick infestations resulted in increased number of CD21(+) B lymphocytes in lymph nodes after the tertiary infestation. However, the number of CD11b(+) and CD11c(+) cells were not altered after the successive infestations. Lower numbers of CD11c(+) cells had infiltrated lymph nodes responsible for draining the tick infested skin. These findings suggest that acquired immunity of goats against nymphs of A. cajennense is possibly established by B lymphocytes during the first infestation and that APCs may play a key role in this mechanism.
Resumo:
RÉSUMÉ Les plaques de Peyer (PP) représentent le site d'entrée majeur des pathogènes au niveau des muqueuses intestinales. Après avoir traversé la cellule M, l'antigène est pris en charge par les cellules dendritiques (DC) de la région sub-épithéliale du dôme des PP. Ces dernières activent une réponse immunitaire qui conduit à la production de l'IgA de sécrétion (SIgA), l'anticorps majeur au niveau muqueux. Des études précédentes dans notre laboratoire ont démontré qu'après administration de SIgA dans des anses intestinales de souris, les SIgA se lient spécifiquement aux cellules M, entrent dans les PP, et sont éventuellement internalisées par les DC. Le but de ce travail est de comprendre la relevance biologique de l'entrée des SIgA dans les PP et leur relevance physiologique dans l'homéostasie mucosale. Dans un premier temps, nous avons montré en utilisant une méthode de purification optimisée basée sur une isolation magnétique, que, en plus des DC myéloïdes (CD11c+/CD11b+) et des DC lymphoïdes (CD11c+/CD8+), les PP de souris contiennent un nouveau sous-type de DC exprimant les marqueurs CD11c et CD19. L'utilisation de la microscopie confocale nous a permis de démontrer que les DC myéloïdes internalisent des SIgA, contrairement aux DC lymphoïdes qui n'interagissent pas avec les SIgA, alors que le nouveau sous-type de DC exprimant CD19 lie les SIgA. En plus, nous avons démontré qu'aucune des DC de rate, de ganglion bronchique ou de ganglion inguinal interagit avec les SIgA. Dans le but d'explorer si les SIgA peuvent délivrer des antigènes aux DC des PP in vivo, nous avons administré des complexes immunitaires formés de Shigella flexneri complexées à des SIgA, dans des anses intestinales de souris. Nous avons observé une entrée dans les PP, suivie d'une migration vers les ganglions mésentériques drainants, contrairement aux Shigella flexneri seules, qui n'infectent pas la souris par la voie intestinale. Shigella flexneri délivrée par SIgA n'induit pas de destruction tissulaire au niveau de l'intestin. En plus de l'exclusion immunitaire, ces résultats suggèrent un nouveau rôle des SIgA, qui consiste à transporter des antigènes à l'intérieur des PP dans un contexte non-inflammatoire. RÉSUMÉ DESTINÉ À UN LARGE PUBLIC L'intestin a pour rôle principal d'absorber les nutriments digérés tout au long du tube digestif, et de les faire passer dans le compartiment intérieur sanguin. Du fait de son exposition chronique avec un monde extérieur constitué d'aliments et de bactéries, l'intestin est un endroit susceptible aux infections et a donc besoin d'empêcher l'entrée de microbes. Pour cela, l'intestin est tapissé de "casernes" appelées les plaques de Peyer, qui appartiennent à un système de défense appelé système immunitaire muqueux. Les plaques de Peyer sont composées de différents types de cellules, ayant pour rôle de contrôler l'entrée de microbes et de développer une réaction immunitaire lors d'infection. Cette réaction immunitaire contre les microbes (antigènes) débute par la prise en charge de l'antigène par des sentinelles, les cellules dendritiques. L'antigène est préparé de façon à être reconnu par d'autres cellules appelées lymphocytes T capables d'activer d'autres cellules, les lymphocytes B. La réaction immunitaire résulte dans la production par les lymphocytes B d'un anticorps spécifique appelé IgA de sécrétion (SIgA) au niveau de la lumière intestinale. De manière classique, le rôle de SIgA au niveau de la lumière intestinale consiste à enrober les microbes et donc exclure leur entrée dans le compartiment intérieur. Dans ce travail, nous avons découvert une nouvelle fonction des SIgA qui consiste à introduire des antigènes dans les plaques de Peyer, et de les diriger vers les cellules dendritiques. Sachant que les SIgA sont des anticorps qui ne déclenchent pas de réactions de défense violentes dites inflammatoires, l'entrée des antigènes via SIgA serait en faveur d'une défense intestinale maîtrisée sans qu'il y ait d'inflammation délétère. Ces résultats nous laissent supposer que l'entrée d'antigènes via SIgA pourrait conduire le système immunitaire muqueux à reconnaître ces antigènes de manière appropriée. Ce mécanisme pourrait expliquer les désordres immunitaires de types allergiques et maladies auto-immunitaires que l'on rencontre chez certaines personnes déficientes en IgA, chez qui cette lecture d'antigènes de manière correcte serait inadéquate. ABSTRACT Peyer's patches (PP) represent the primary site for uptake and presentation of ingested antigens in the intestine. Antigens are sampled by M cells, which pass them to underlying antigen-presenting cells including dendritic cells (DC). This leads to the induction of mucosal T cell response that is important for the production of secretory IgA (SIgA), the chief antibody at mucosal surfaces. Previous studies in the laboratory have shown that exogenous SIgA administrated into mouse intestinal loop binds specifically to M cells, enter into PP, and is eventually internalized by DC. The aim of this work is to understand the biological significance of the SIgA uptake by PP DC and its physiological relevance for mucosal homeostasis. As a first step, we have shown by using an optimized MACS method that, in addition to the CD11c+/CD11b+ (myeloid DC) and CD11c+/CD8+ (lymphoid DC) subtypes, mouse PP contain a novel DC subtype exhibiting both CD11c and CD19 markers. By using a combination of MACS isolation and confocal microscopy, we have demonstrated that in contrast to the lymphoid DC which do not interact with SIgA, the myeloid DC internalize SIgA, while the CD19+ subtype binds SIgA on its surface. Neither spleen DC, nor bronchial-lymph node DC, nor inguinal lymph node DC exhibit such a binding specificity. To test whether SIgA could deliver antigens to PP DC in vivo, we administered SIgA-Shigella flexneri immune complexes into mouse intestinal loop containing a PP. We found that (i) SIgA-Shigella flexneri immune complexes enter the PP and are internalized by sub-epithelial dome PP DC, in contrast to Shigella flexneri alone that does not penetrate the intestinal epithelia in mice, (ii) immune complexes migrate to the draining mesenteric lymph node, (iii) Shigella flexneri carried via SIgA do not induce intestinal tissue destruction. Our results suggest that in addition to immune exclusion, SIgA transports antigens back to the PP under non-inflammatory conditions.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
INTRODUCTION Nanosized particles may enable therapeutic modulation of immune responses by targeting dendritic cell (DC) networks in accessible organs such as the lung. To date, however, the effects of nanoparticles on DC function and downstream immune responses remain poorly understood. METHODS Bone marrow-derived DCs (BMDCs) were exposed in vitro to 20 or 1,000 nm polystyrene (PS) particles. Particle uptake kinetics, cell surface marker expression, soluble protein antigen uptake and degradation, as well as in vitro CD4(+) T-cell proliferation and cytokine production were analyzed by flow cytometry. In addition, co-localization of particles within the lysosomal compartment, lysosomal permeability, and endoplasmic reticulum stress were analyzed. RESULTS The frequency of PS particle-positive CD11c(+)/CD11b(+) BMDCs reached an early plateau after 20 minutes and was significantly higher for 20 nm than for 1,000 nm PS particles at all time-points analyzed. PS particles did not alter cell viability or modify expression of the surface markers CD11b, CD11c, MHC class II, CD40, and CD86. Although particle exposure did not modulate antigen uptake, 20 nm PS particles decreased the capacity of BMDCs to degrade soluble antigen, without affecting their ability to induce antigen-specific CD4(+) T-cell proliferation. Co-localization studies between PS particles and lysosomes using laser scanning confocal microscopy detected a significantly higher frequency of co-localized 20 nm particles as compared with their 1,000 nm counterparts. Neither size of PS particle caused lysosomal leakage, expression of endoplasmic reticulum stress gene markers, or changes in cytokines profiles. CONCLUSION These data indicate that although supposedly inert PS nanoparticles did not induce DC activation or alteration in CD4(+) T-cell stimulating capacity, 20 nm (but not 1,000 nm) PS particles may reduce antigen degradation through interference in the lysosomal compartment. These findings emphasize the importance of performing in-depth analysis of DC function when developing novel approaches for immune modulation with nanoparticles.
Resumo:
The leukocyte integrin, lymphocyte function-associated antigen 1 (LFA-1) (CD11a/CD18), mediates cell adhesion and signaling in inflammatory and immune responses. To support these functions, LFA-1 must convert from a resting to an activated state that avidly binds its ligands such as intercellular adhesion molecule 1 (ICAM-1). Biochemical and x-ray studies of the Mac-1 (CD11b/CD18) I domain suggest that integrin activation could involve a conformational change of the C-terminal α-helix. We report the use of NMR spectroscopy to identify CD11a I domain residues whose resonances are affected by binding to ICAM-1. We observed two distinct sites in the CD11a I domain that were affected. As expected from previous mutagenesis studies, a cluster of residues localized around the metal ion-dependent adhesion site (MIDAS) was severely perturbed on ICAM-1 binding. A second cluster of residues distal to the MIDAS that included the C-terminal α-helix of the CD11a I domain was also affected. Substitution of residues in the core of this second I domain site resulted in constitutively active LFA-1 binding to ICAM-1. Binding data indicates that none of the 20 substitution mutants we tested at this second site form an essential ICAM-1 binding interface. We also demonstrate that residues in the I domain linker sequences can regulate LFA-1 binding. These results indicate that LFA-1 binding to ICAM-1 is regulated by an I domain allosteric site (IDAS) and that this site is structurally linked to the MIDAS.
Resumo:
The adenylate cyclase toxoid (ACT) of Bordetella pertussis is capable of delivering its N-terminal catalytic domain into the cytosol of CD11b-expressing professional antigen-presenting cells such as myeloid dendritic cells. This allows delivery of CD8+ T-cell epitopes to the major histocompatibility complex (MHC) class I presentation pathway. Recombinant detoxified ACT containing an epitope of the Plasmodium berghei circumsporozoite protein (CSP), indeed, induced a specific CD8+ T-cell response in immunized mice after a single application, as detected by MHC multimer staining and gamma interferon (IFN-gamma) ELISPOT assay. This CSP-specific response could be significantly enhanced by prime-boost immunization with recombinant ACT in combination with anti-CTLA-4 during the boost immunization. This increased response was accompanied by complete protection in a number of mice after a challenge with P. berghei sporozoites. Transient blockade of CTLA-4 may overcome negative regulation and hence provide a strategy to enhance the efficacy of a vaccine by amplifying the number of responding T cells.
Resumo:
Feline Immunodeficiency Virus is a worldwide infection and is considered a significant pathogen. The diagnosis of FIV infections is mainly based on commercially available rapid tests that are highly expensive in Brazil, hence it is rarely performed in the country. Furthermore, lentiviruses grow slowly and poorly in tissue cultures, making the production of viral antigen by classic means and thus the establishment of FIV immunodiagnosis impracticable. In order to deal with this, recombinant DNA techniques were adopted to produce the protein p24, a viral capsid antigen. The protein's reactivity evaluation analyzed by Western blot indicated that this recombinant antigen can be a useful tool for the immunodiagnostic of FIV infections.
Resumo:
Apical membrane antigen 1 (AMA-1) is considered to be a major candidate antigen for a malaria vaccine. Previous immunoepidemiological studies of naturally acquired immunity to Plasmodium vivax AMA-1 (PvAMA-1) have shown a higher prevalence of specific antibodies to domain II (DII) of AMA-1. In the present study, we confirmed that specific antibody responses from naturally infected individuals were highly reactive to both full-length AMA-1 and DII. Also, we demonstrated a strong association between AMA-1 and DII IgG and IgG subclass responses. We analyzed the primary sequence of PvAMA-1 for B cell linear epitopes co-occurring with intrinsically unstructured/ disordered regions (IURs). The B cell epitope comprising the amino acid sequence 290-307 of PvAMA-1 (SASDQPTQYEEEMTDYQK), with the highest prediction scores, was identified in domain II and further selected for chemical synthesis and immunological testing. The antigenicity of the synthetic peptide was identified by serological analysis using sera from P. vivax-infected individuals who were knowingly reactive to the PvAMA-1 ectodomain only, domain II only, or reactive to both antigens. Although the synthetic peptide was recognized by all serum samples specific to domain II, serum with reactivity only to the full-length protein presented 58.3% positivity. Moreover, IgG reactivity against PvAMA-1 and domain II after depletion of specific synthetic peptide antibodies was reduced by 18% and 33% (P = 0.0001 for both), respectively. These results suggest that the linear epitope SASDQPTQYEEEMTDYQK is highly antigenic during natural human infections and is an important antigenic region of the domain II of PvAMA-1, suggesting its possible future use in pre-clinical studies.
Resumo:
Paracoccidioidomycosis (PCM), endemic in Latin America, is a progressive systemic mycosis caused by Paracoccidioides brasiliensis (P. brasiliensis), which primarily attacks lung tissue. Dendritic cells (DCs) are able to initiate a response in naive T cells, and they also participate in Th-cell education. Furthermore, these cells have been used for therapy in several disease models. Here we transfected DCs with a plasmid (pMAC/PS-scFv) encoding a single chain variable fragment (scFv) of an anti-Id antibody that is capable of mimicking gp43, the main antigenic component of P. brasiliensis. First, Balb/c mice were immunized subcutaneously with pMAC/PS-scFv and, after seven days, scFv protein was presented to the regional lymph nodes cells. Moreover, we showed that the DCs transfected with scFv were capable of efficiently activating proliferation of total lymph node cells and inducing a decrease in lung infection. Therefore, our results suggested that the use of scFv-transfected DCs may be a promising therapy in the paracoccidioidomycosis (PCM) model.
Resumo:
The immunogenic properties of cysteine proteases obtained from excretory/secretory products (ES) of Haemonchus contortus were investigated with a fraction purified with a recombinant H. contortus cystatin affinity column. The enrichment of H. contortus ES for cysteine protease was confirmed with substrate SDS-PAGE gels since the cystatin-binding fraction activity was three times higher than total ES, despite representing only 3% of total ES. This activity was inhibited by a specific cysteine protease inhibitor (E64) and by recombinant cystatin. The one-dimensional profile of the cystatin-binding fraction displayed a single band with a molecular mass of 43 kDa. Mass spectrometry showed this to be AC-5, a cathepsin B-like cysteine protease which had not been identified in ES products of H. contortus before. The cystatin binding fraction was tested as an immunogen in lambs which were vaccinated three times (week 0, 2.5 and 5), challenged with 10 000 L3 H. contortus (week 6) before necropsy and compared to unvaccinated challenge controls and another group given total ES (n = 10 per group). The group vaccinated with cystatin-binding proteins showed 36% and 32% mean worm burden and eggs per gram of faeces (EPG) reductions, respectively, compared to the controls but total ES was almost without effect. After challenge the cystatin-binding proteins induced significantly higher local and systemic ES specific IgA and IgG responses.
Resumo:
Background: mRNAs are highly versatile, non-toxic molecules that are easy to produce and store, which can allow transient protein expression in all cell types. The safety aspects of mRNA-based treatments in gene therapy make this molecule one of the most promising active components of therapeutic or prophylactic methods. The use of mRNA as strategy for the stimulation of the immune system has been used mainly in current strategies for the cancer treatment but until now no one tested this molecule as vaccine for infectious disease. Results: We produce messenger RNA of Hsp65 protein from Mycobacterium leprae and show that vaccination of mice with a single dose of 10 mu g of naked mRNA-Hsp65 through intranasal route was able to induce protection against subsequent challenge with virulent strain of Mycobacterium tuberculosis. Moreover it was shown that this immunization was associated with specific production of IL-10 and TNF-alpha in spleen. In order to determine if antigen presenting cells (APCs) present in the lung are capable of capture the mRNA, labeled mRNA-Hsp65 was administered by intranasal route and lung APCs were analyzed by flow cytometry. These experiments showed that after 30 minutes until 8 hours the populations of CD11c(+), CD11b(+) and CD19(+) cells were able to capture the mRNA. We also demonstrated in vitro that mRNA-Hsp65 leads nitric oxide (NO) production through Toll-like receptor 7 (TLR7). Conclusions: Taken together, our results showed a novel and efficient strategy to control experimental tuberculosis, besides opening novel perspectives for the use of mRNA in vaccines against infectious diseases and clarifying the mechanisms involved in the disease protection we noticed as well.