998 resultados para CATECHOLAMINE RESPONSE


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to assess the appearance of cardiac troponins (cTnI and/or cTnT) after a short bout (30 s) of ‘all-out’ intense exercise and to determine the stability of any exercise-related cTnI release in response to repeated bouts of high intensity exercise separated by 7 days recovery. Eighteen apparently healthy, physically active, male university students completed two all-out 30 s cycle sprint, separated by 7 days. cTnI, blood lactate and catecholamine concentrations were measured before, immediately after and 24 h after each bout. Cycle performance, heart rate and blood pressure responses to exercise were also recorded. Cycle performance was modestly elevated in the second trial [6·5% increase in peak power output (PPO)]; there was no difference in the cardiovascular, lactate or catecholamine response to the two cycle trials. cTnI was not significantly elevated from baseline through recovery (Trial 1: 0·06 ± 0·04 ng ml−1, 0·05 ± 0·04 ng ml−1, 0·03 ± 0·02 ng ml−1; Trial 2: 0·02 ± 0·04 ng ml−1, 0·04 ± 0·03 ng ml−1, 0·05 ± 0·06 ng ml−1) in either trial. Very small within subject changes were not significantly correlated between the two trials (r = 0·06; P>0·05). Subsequently, short duration, high intensity exercise does not elicit a clinically relevant response in cTnI and any small alterations likely reflect the underlying biological variability of cTnI measurement within the participants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of the study was to compare epidural and systemic tramadol for postoperative analgesia in bitches undergoing ovariohysterectomy. Twenty animals, randomly divided into two groups, received either epidural (EPI) or intramuscular (IM) tramadol (2 mg/kg) 30 min before anesthetic induction. Analgesia, sedation, cardiorespiratory parameters, end-tidal isoflurane, blood catecholamines and cortisol, and arterial blood gases were measured at different time points up to 24 hr after agent administration. There were no differences between the two groups regarding cardiorespiratory parameters, end-tidal isoflurane, and pain scores. Two dogs in the IM and one in the EPI group required supplemental analgesia. Cortisol was increased (P<0.05) at 120 min (3.59 mu g/dL and 3.27 mu g/dL in the IM and EPI groups, respectively) and 240 min (2.45 mu g/dL and 2.54 mu g/dL in the IM and EPI groups, respectively) compared to baseline. Norepinephrine was also increased (P<0.05) at 120 min in both groups compared to baseline values. Epinephrine values were higher (P<0.05) in the IM group compared with the EPI group at 50 min, 120 min, and 1,440 min after tramadol administration. Epidural tramadol is a safe analgesic, but does not appear to have improved analgesic effects compared with IM administration. (J Am Anim Hosp Assoc 2012; 48:310-319. DOI 10.5326/JAAHA-MS-5795)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigated whether the human growth hormone (HGH) response to catecholamine depletion differs between fully remitted patients with major depressive disorder and healthy control subjects. Fourteen unmedicated subjects with remitted major depressive disorder (RMDD) and 11 healthy control subjects underwent catecholamine depletion with oral α-methylparatyrosine (AMPT) in a randomized, placebo-controlled, double-blind crossover study. The main outcome measure was the serum level of HGH. The diagnosis × drug interaction for HGH serum concentration was significant (F₁,₂₃ = 7.66, P < 0.02). This interaction was attributable to the HGH level increasing after AMPT administration in the RMDD subjects but not in the healthy subjects. In the RMDD sample, the AMPT-induced increase in HGH concentration correlated inversely with AMPT-induced anxiety symptoms as assessed using the Beck Anxiety Inventory (r = -0.63, P < 0.02). There was a trend toward an inverse correlation of the AMPT-induced HGH concentration changes with AMPT-induced depressive symptoms as measured by the BDI (r = -0.53, P = 0.05). Following catecholamine depletion, the RMDD subjects were differentiated from control subjects by their HGH responses. This finding, together with the negative correlation between HGH response and AMPT-induced anxiety symptoms in RMDD subjects, suggests that AMPT administration results in a deeper nadir in central catecholaminergic transmission, as reflected by a greater disinhibition of HGH secretion, in RMDD subjects versus control subjects.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recent evidence suggests that increased psychophysiological response to negatively valenced emotional stimuli found in major depressive disorder (MDD) may be associated with reduced catecholaminergic neurotransmission. Fourteen unmedicated, remitted subjects with MDD (RMDD) and 13 healthy control subjects underwent catecholamine depletion with oral α-methyl-para-tyrosine (AMPT) in a randomized, placebo-controlled, double-blind crossover trial. Subjects were exposed to fearful (FF) and neutral faces (NF) during a scan with [15O]H2O positron emission tomography to assess the brain-catecholamine interaction in brain regions previously associated with emotional face processing. Treatment with AMPT resulted in significantly increased, normalized cerebral blood flow (CBF) in the left inferior temporal gyrus (ITG) and significantly decreased CBF in the right cerebellum across conditions and groups. In RMDD, flow in the left posterior cingulate cortex (PCC) increased significantly in the FF compared to the NF condition after AMPT, but remained unchanged after placebo, whereas healthy controls showed a significant increase under placebo and a significant decrease under AMPT in this brain region. In the left dorsolateral prefrontal cortex (DLPFC), flow decreased significantly in the FF compared to the NF condition under AMPT, and increased significantly under placebo in RMDD, whereas healthy controls showed no significant differences. Differences between AMPT and placebo of within-session changes in worry-symptoms were positively correlated with the corresponding changes in CBF in the right subgenual prefrontal cortex in RMDD. In conclusion, this study provided evidence for a catecholamine-related modulation of the neural responses to FF expressions in the left PCC and the left DLPFC in subjects with RMDD that might constitute a persistent, trait-like abnormality in MDD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to inhibit unwanted actions is a heritable executive function that may confer risk to disorders such as attention deficit hyperactivity disorder (ADHD). Converging evidence from pharmacology and cognitive neuroscience suggests that response inhibition is instantiated within frontostriatal circuits of the brain with patterns of activity that are modulated by the catecholamines dopamine and noradrenaline. A total of 405 healthy adult participants performed the stop-signal task, a paradigmatic measure of response inhibition that yields an index of the latency of inhibition, termed the stop-signal reaction time (SSRT). Using this phenotype, we tested for genetic association, performing high-density single-nucleotide polymorphism mapping across the full range of autosomal catecholamine genes. Fifty participants also underwent functional magnetic resonance imaging to establish the impact of associated alleles on brain and behaviour. Allelic variation in polymorphisms of the dopamine transporter gene (SLC6A3: rs37020; rs460000) predicted individual differences in SSRT, after corrections for multiple comparisons. Furthermore, activity in frontal regions (anterior frontal, superior frontal and superior medial gyri) and caudate varied additively with the T-allele of rs37020. The influence of genetic variation in SLC6A3 on the development of frontostriatal inhibition networks may represent a key risk mechanism for disorders of behavioural inhibition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background/Aims: Early life experiences are homeostatic determinants for adult organisms. We evaluated the impact of prenatal immune activation during late gestation on the neuroimmune-endocrine function of adult offspring and its interaction with acute stress. Methods: Pregnant Swiss mice received saline or lipopolysaccharide (LPS) on gestational day 17. Adult male offspring were assigned to the control or restraint stress condition. We analyzed plasmatic corticosterone and catecholamine levels, the monoamine content in the hypothalamus, striatum and frontal cortex, and the sleep-wake cycle before and after acute restraint stress. Results and Conclusion: Offspring from LPS-treated dams had increased baseline norepinephrine levels and potentiated corticosterone secretion after the acute stressor, and no effect was observed on hypothalamic monoamine content or sleep behavior. The offspring of immune-activated dams exhibited impairments in stress-induced serotonergic and dopaminergic alterations in the striatum and frontal cortex. The data demonstrate a distinction between the plasmatic levels of corticosterone in response to acute stress and the hypothalamic monoamine content and sleep patterns. We provide new evidence regarding the influence of immune activation during late gestation on the neuroendocrine homeostasis of offspring.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Disturbances in reward processing have been implicated in bulimia nervosa (BN). Abnormalities in processing reward-related stimuli might be linked to dysfunctions of the catecholaminergic neurotransmitter system, but findings have been inconclusive. A powerful way to investigate the relationship between catecholaminergic function and behavior is to examine behavioral changes in response to experimental catecholamine depletion (CD). The purpose of this study was to uncover putative catecholaminergic dysfunction in remitted subjects with BN who performed a reinforcement-learning task after CD. CD was achieved by oral alpha-methyl-para-tyrosine (AMPT) in 19 unmedicated female subjects with remitted BN (rBN) and 28 demographically matched healthy female controls (HC). Sham depletion administered identical capsules containing diphenhydramine. The study design consisted of a randomized, double-blind, placebo-controlled crossover, single-site experimental trial. The main outcome measures were reward learning in a probabilistic reward task analyzed using signal-detection theory. Secondary outcome measures included self-report assessments, including the Eating Disorder Examination-Questionnaire. Relative to healthy controls, rBN subjects were characterized by blunted reward learning in the AMPT-but not in placebo-condition. Highlighting the specificity of these findings, groups did not differ in their ability to perceptually distinguish between stimuli. Increased CD-induced anhedonic (but not eating disorder) symptoms were associated with a reduced response bias toward a more frequently rewarded stimulus. In conclusion, under CD, rBN subjects showed reduced reward learning compared with healthy control subjects. These deficits uncover disturbance of the central reward processing systems in rBN related to altered brain catecholamine levels, which might reflect a trait-like deficit increasing vulnerability to BN.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: This study was designed to examine differences in the arteriolar vasoconstrictive response between arginine vasopressin (AVP) and norepinephrine (NE) on the microcirculatory level in the hamster window chamber model in unanesthetized, normotonic hamsters using intravital microscopy. It is known from patients with advanced vasodilatory shock that AVP exerts strong additional vasoconstriction when incremental dosage increases of NE have no further effect on mean arterial blood pressure (MAP). METHODS: In a prospective controlled experimental study, eleven awake, male golden Syrian hamsters were instrumented with a viewing window inserted into the dorsal skinfold. NE (2 microg/kg/minute) and AVP (0.0001 IU/kg/minute, equivalent to 4 IU/h in a 70 kg patient) were continuously infused to achieve a similar increase in MAP. According to their position within the arteriolar network, arterioles were grouped into five types: A0 (branch off small artery) to A4 (branch off A3 arteriole). RESULTS: Reduction of arteriolar diameter (NE, -31 +/- 12% versus AVP, -49 +/- 7%; p = 0.002), cross sectional area (NE, -49 +/- 17% versus AVP, -73 +/- 7%; p = 0.002), and arteriolar blood flow (NE, -62 +/- 13% versus AVP, -80 +/- 6%; p = 0.004) in A0 arterioles was significantly more pronounced in AVP animals. There was no difference in red blood cell velocities in A0 arterioles between groups. The reduction of diameter, cross sectional area, red blood cell velocity, and arteriolar blood flow in A1 to A4 arterioles was comparable in AVP and NE animals. CONCLUSION: Within the microvascular network, AVP exerted significantly stronger vasoconstriction on large A0 arterioles than NE under physiological conditions. This observation may partly explain why AVP is such a potent vasopressor hormone and can increase systemic vascular resistance even in advanced vasodilatory shock unresponsive to increases in standard catecholamine therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Acute mental stress elicits blood hypercoagulability. Following a transactional stress model, we investigated whether individuals who anticipate stress as more threatening, challenging, and as exceeding their coping skills show greater stress reactivity of the coagulation activation marker D-dimer, indicating fibrin generation in plasma. METHODS: Forty-seven men (mean age 44 +/- 14 years; mean blood pressure [MBP] 101 +/- 12 mm Hg; mean body mass index [BMI] 26 +/- 3 kg/m(2)) completed the Primary Appraisal Secondary Appraisal (PASA) scale before undergoing the Trier Social Stress Test (combination of mock job interview and mental arithmetic task). Heart rate, blood pressure, plasma catecholamines, and D-dimer levels were measured before and after stress, and during recovery up to 60 minutes poststress. RESULTS: Hemodynamic measures, catecholamines, and D-dimer changed across all time points (p values <.001). The PASA "Stress Index" (integrated measure of transactional stress perception) correlated with total D-dimer area under the curve (AUC) between rest and 60 minutes poststress (r = 0.30, p = .050) and with D-dimer change from rest to immediately poststress (r = 0.29, p = .046). Primary appraisal (combined "threat" and "challenge") correlated with total D-dimer AUC (r = 0.37, p = .017), D-dimer stress change (r = 0.41, p = .004), and D-dimer recovery (r = 0.32, p = .042). "Challenge" correlated more strongly with D-dimer stress change than "threat" (p = .020). Primary appraisal (DeltaR(2) = 0.098, beta = 0.37, p = .019), and particularly its subscale "challenge" (DeltaR(2) = 0.138, beta = 0.40, p = .005), predicted D-dimer stress change independently of age, BP, BMI, and catecholamine change. CONCLUSIONS: Anticipatory cognitive appraisal determined the extent of coagulation activation to and recovery from stress in men. Particularly individuals who anticipated the stressor as more challenging and also more threatening had a greater fibrin stress response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acute mental stress is a potent trigger of acute coronary syndromes. Catecholamine-induced hypercoagulability with acute stress contributes to thrombus growth after coronary plaque rupture. Melatonin may diminish catecholamine activity. We hypothesized that melatonin mitigates the acute procoagulant stress response and that this effect is accompanied by a decrease in the stress-induced catecholamine surge. Forty-five healthy young men received a single oral dose of either 3 mg melatonin (n = 24) or placebo medication (n = 21). One hour thereafter, they underwent a standardized short-term psychosocial stressor. Plasma levels of clotting factor VII activity (FVII:C), FVIII:C, fibrinogen, D-dimer, and catecholamines were measured at rest, immediately after stress, and 20 min and 60 min post-stress. The integrated change in D-dimer levels from rest to 60 min post-stress differed between medication groups controlling for demographic and metabolic factors (P = 0.047, eta(p)(2) = 0.195). Compared with the melatonin group, the placebo group showed a greater increase in absolute D-dimer levels from rest to immediately post-stress (P = 0.13; eta(p)(2) = 0.060) and significant recovery of D-dimer levels from immediately post-stress to 60 min thereafter (P = 0.007; eta(p)(2) = 0.174). Stress-induced changes in FVII:C, FVIII:C, fibrinogen, and catecholamines did not significantly differ between groups. Oral melatonin attenuated the stress-induced elevation in the sensitive coagulation activation marker D-dimer without affecting catecholamine activity. The finding provides preliminary support for a protective effect of melatonin in reducing the atherothrombotic risk with acute mental stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is increasing preclinical and clinical evidence of the important role played by the gastric peptide hormone ghrelin in the pathogenesis of symptoms of depression and eating disorders. To investigate the role of ghrelin and its considered counterpart, peptide tyrosine tyrosine (PYY), in the development of bulimic and depressive symptoms induced by catecholamine depletion, we administered the tyrosine hydroxylase inhibitor alpha-methyl-paratyrosine (AMPT) in a randomized, double-blind, placebo-controlled crossover, single-site experimental trial to 29 healthy controls and 20 subjects with fully recovered bulimia nervosa (rBN). We found a decrease between peprandial and postprandial plasma ghrelin levels (p < 0.0001) and a postprandial rise in plasma PYY levels (p < 0.0001) in both conditions in the entire study population. Plasma ghrelin levels decreased in the entire study population after treatment with AMPT compared to placebo (p < 0.006). AMPT-induced changes in plasma ghrelin levels were negatively correlated with AMPT-induced depressive symptoms (p < 0.004). Plasma ghrelin and plasma PYY levels were also negatively correlated (p < 0.05). We did not observe a difference in ghrelin or PYY response to catecholamine depletion between rBN subjects and healthy controls, and there was no correlation between plasma ghrelin and PYY levels and bulimic symptoms induced by catecholamine depletion. These findings suggest a relationship between catecholamines and ghrelin with depressive symptoms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Bulimia nervosa (BN) has been associated with dysregulation of the central catecholaminergic system. An instructive way to investigate the relationship between catecholaminergic function and psychiatric disorder has involved behavioral responses to experimental catecholamine depletion (CD). The purpose of this study was to examine a possible catecholaminergic dysfunction in the pathogenesis of bulimia nervosa. METHODS: CD was achieved by oral administration of alpha-methyl-para-tyrosine (AMPT) in 18 remitted female subjects with BN (rBN) and 31 healthy female control subjects. The study design consisted of a randomized, double blind, placebo-controlled crossover, single-site experimental trial. The main outcome measures were bulimic symptoms assessed by the Eating Disorder Examination-Questionnaire. Measures were assessed before and 26, 30, 54, 78, 102 hours after the first AMPT or placebo administration. RESULTS: In the experimental environment (controlled environment with a low level of food cues) rBN subjects had a greater increase in eating disorder symptoms during CD compared with healthy control subjects (condition × diagnosis interaction, p < .05). In the experimental environment, rBN subjects experienced fewer bulimic symptoms than in the natural environment (uncontrolled environment concerning food cues) 36 hours after the first AMPT intake (environment × diagnosis interaction, p < .05). Serum prolactin levels increased significantly, and to a comparable degree across groups, after AMPT administration. CONCLUSIONS: This study suggests that rBN is associated with vulnerability for developing eating disorder symptoms in response to reduced catecholamine neurotransmission after CD. The findings support the notion of catecholaminergic dysfunction as a possible trait abnormality in BN.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tyrosine hydroxylase (TH), the initial and rate limiting enzyme in the catecholaminergic biosynthetic pathway, is phosphorylated on multiple serine residues by multiple protein kinases. Although it has been demonstrated that many protein kinases are capable of phosphorylating and activating TH in vitro, it is less clear which protein kinases participate in the physiological regulation of catecholamine synthesis in situ. These studies were designed to determine if protein kinase C (PK-C) plays such a regulatory role.^ Stimulation of intact bovine adrenal chromaffin cells with phorbol esters results in stimulation of catecholamine synthesis, tyrosine hydroxylase phosphorylation and activation. These responses are both time and concentration dependent, and are specific for those phorbol ester analogues which activate PK-C. RP-HPLC analysis of TH tryptic phosphopeptides indicate that PK-C phosphorylates TH on three putative sites. One of these (pepetide 6) is the same as that phosphorylated by both cAMP-dependent protein kinase (PK-A) and calcium/calmodulin-dependent protein kinase (CaM-K). However, two of these sites (peptides 4 and 7) are unique, and, to date, have not been shown to be phosphorylated by any other protein kinase. These peptides correspond to those which are phosphorylated with a slow time course in response to stimulation of chromaffin cells with the natural agonist acetylcholine. The activation of TH produced by PK-C is most closely correlated with the phosphorylation of peptide 6. But, as evident from pH profiles of tyrosine hydroxylase activity, phosphorylation of peptides 4 and 7 affect the expression of the activation produced by phosphorylation of peptide 6.^ These data support a role for PK-C in the control of TH activity, and suggest a two stage model for the physiological regulation of catecholamine synthesis by phosphorylation in response to cholinergic stimulation. An initial fast response, which appears to be mediated by CaM-K, and a slower, sustained response which appears to be mediated by PK-C. In addition, the multiple site phosphorylation of TH provides a mechanism whereby the regulation of catecholamine synthesis appears to be under the control of multiple protein kinases, and allows for the convergence of multiple, diverse physiological and biochemical signals. ^