90 resultados para CARBOXYLATES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-ray absorpion near edge structure (xanes) of copper compounds with copper in 1+, 2+ and 3+ states has been studied. Extended x-ray absorption fine structure (exafs) has been employed to determine bond distances and coordination numbers in several model copper compounds. Employing bothxanes andexafs, the structure of the copper complex formed by the micro-organismPseudomonas aeruginosa has been shown to be square-planar with the Cu-O distance close to that in cupric glucuronates and cupric acetylacetonate.exafs has been shown to be useful for studying metal-metal bonds in copper carboxylates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The supramolecular structures of eight aryl protected ethyl-6-methyl-4-phenyl-2-thioxo-1,2,3,4 tetrahydropyrimidine-5-carboxyl ates were analyzed in order to understand the effect of variations in functional groups on molecular geometry, conformation and packing of molecules in the crystalline lattice. It is observed that the existence of a short intra-molecular C-H center dot center dot center dot pi interaction between the aromatic hydrogen of the aryl ring with the isolated double bond of the six-membered tetrahydropyrimidine ring is a key feature which imparts additional stability to the molecular conformation in the solid state. The compounds pack via the cooperative involvement of both N-H center dot center dot center dot S=C and N-H center dot center dot center dot O=C intermolecular dimers forming a sheet like structure. In addition, weak C-H center dot center dot center dot O and C-H center dot center dot center dot pi intermolecular interactions provide additional stability to the crystal packing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper(II) hydrazine carboxylate monohydrate, Cu(N2H3COO)2·H2O and chromium (II, III) hydrazine carboxylate hydrates, Cu(N2H3COO)2·H2O and Cu(N2H3COO)2·3H2O have been prepared and characterised by chemical analysis, IR, visible spectra and magnetic measurements. Thermal analysis of the copper complex yields a mixture of copper metal and copper oxide. Chromium complexes on thermal decomposition yield Cr2O3 as residue. Decomposition of chromium(HI) complex under hydrothermal conditions yield CrOOH, a precursor to CrO2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extensive research work has been carried out in the last few years on the synthesis and characterization of several families of open-framework materials, including aluminosilicates,[1] phosphates,[2] and carboxylates.[3] These studies have shown the occurrence of a variety of three dimensional (3D) architectures containing channels and other features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthesis of methyl 2, 7-dimethyltricyclo{5.2.2.0(1,5}undec-5-en-6-carboxylates, the tricyclic skeleton present in (+)-allo-cedrol (1) is described using the Diels-Alder strategy. Thus, Birch reduction of the aromatic acid 8 gives 5, the methyl ester of which is isomerised with DBU to a 1:1 mixture of the dienes 6 and 4. Cycloaddition of this mixture with 2-chloroacrylonitrile followed by hydrolysis yields the ketone 60 having the tricyclo{5.2.2.0(1.5)}undec-5-ene framework. Similar reaction with methyl vinyl ketone affords the regioisomeric adducts 61 and 62.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reaction of SbPh(2)Cl(3) (1 mol) with the silver salt of dicyclohexylphosphinic acid (2 mol) afforded {SbPh(2)Cl[O2P(C6H11)(2)]}O-2 1, a similar reaction with AgO2P(C8H15)(2) gave a product formulated as {SbPh(2)Cl[O2P(C8H15)(2)]}O-2 2. Similar reactions with silver carboxylates (1:3 stoichiometry) led to the crystalline derivatives [SbPh(2)(O(2)CR)(2)]O-2 (R = Ph 3, CHPh(2) 4, 2,4,6-Me(3)C(6)H(2) 5, 2-MeC(6)H(4) 6 or 4-MeC(6)H(4) 7), whereas the 1:2 reaction afforded crystalline SbPh(2)Cl(O(2)CR)(2) (R = Ph 8, 2-MeC(6)H(4) 9 or 4-MeC(6)H(4) 10). Interconversion of the previously known compounds [SbPh(2)(O(2)CMe)(2)]O and Sb(4)Ph(8)O(6) . 3MeCO(2)H was achieved and established by H-1 NMR spectroscopy. Compounds 1 and 3 were further characterized by X-ray diffraction; the antimony in 1 is six-co-ordinated with bridging phosphinates whereas in 3 it is seven-co-ordinated with chelating benzoates. Short Sb-O (oxo) distances (1.923 Angstrom) and near linearity at the bridging ox

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three new compounds of bismuth, C4N2H10]center dotBi(C7H4NO4)(C7H3NO4)]center dot H2O, I, Bi(C5H3N2O4) (C5H2N2O4)], II, and Bi(mu(2)-OH)(C7H3NO4)], III, have been prepared by the reaction between bismuth nitrate and heterocyclic aromatic dicarboxylic acids, 2,6-pyridinedicarboxylic acid, 4,5-imidazoledicarboxylic acid, and 3,4-pyridinedicarboxylic acid, respectively, under hydrothermal conditions. The structures of all the compounds have linkages between Bi2O2 and the corresponding dicarboxylate forming a simple molecular unit in I, a bilayer arrangement in II, and a three-dimensional extended structure in III. The topological arrangement of the nodal building units in the structures indicates that a brucite-related layer (II) and fluorite-related arrangement (III) can be realized in these structures. By utilizing the secondary interactions, one can correlate the structure of III to a Kagome-related one. The observation of such classical inorganic related structures in the bismuth carboxylates is noteworthy. Lewis acid catalytic studies on the formation of ketal suggest the possible participatory role of the lone pair of electrons. All the compounds are characterized employing elemental analysis, IR, UV-vis, and thermal studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new series of inorganic-organic hybrid framework compounds, Ln(2)(mu(3)-OH)(C4H4O5)(2)(C4H2O4)]center dot 2H(2)O, (Ln = Ce, Pr and Nd), have been prepared employing a hydrothermal method. Malic acid and fumaric acid form part of the structure. The malate units connect the lanthanide centers forming Ln-O-Ln two-dimensional layers, which are cross-linked by the fumarate units forming the three-dimensional structure. Extra framework water molecules form a dimer and occupy the channels. The water molecules can be reversibly adsorbed. The dehydrated structure did not show any differences in framework structure/ connectivity. The presence of lattice water provides a pathway for proton conductivity. Optical studies suggest an up-conversion behavior involving more than one photon for a neodymium compound.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel soluble rare earth aromatic carboxylates were prepared. The triplet energy level of organic ligand was measured. The photoluminescence properties of the Tb3+ and EU3+ aromatic carboxylates and lifetimes were investigated, which indicated that these rare earth complexes have high quantum efficiency. Because of their excellent solubility, polymer-doping rare earth carboxylates were fabricated as thin Films by spin-coating method and their luminescence properties were studied. Some rare earth organic light-emitting diodes were successfully fabricated which performed high pure color. The maximum luminance of the device of ITO/PVK/PVK :Th (AS)(3)Phen: PBD/PBD/Al is 32 cd(.)m(-2) at 28 V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chapter 1 of this thesis is a brief introduction to the preparation and reactions of α-diazocarbonyl compounds, with particular emphasis on the areas relating to the research undertaken: C-H insertion, addition to aromatics, and oxonium ylide generation and rearrangement. A short summary of catalyst development illustrates the importance of rhodium(II)carboxylates for α-diazocarbonyl decomposition. Chapter 2 describes intramolecular C-H insertion reactions of α-diazo-β-keto sulphones to form substituted cyclopentanones. Rhodium(II) carboxylates derived from homochiral carboxylic acids were used as catalysts in these reactions and enantioselection achieved through their use is discussed. Chapter 3 describes intramolecular Buchner cyclisation of aryl diazoketones with emphasis on the stereochemical aspects of the cyclisation and subsequent reaction of the bicyclo[5.3.0]decatrienones produced. The partial asymmetric synthesis achieved through use of chiral rhodium(II) carboxylates as catalysts is discussed. The application of the intramolecular Buchner reaction to the synthesis of hydroazulene lactones is illustrated. Chapter 4 demonstrates oxonium ylide formation and rearrangement in the decomposition of an α-diazoketone. The consequences of the use of chiral rhodium(II) carboxylates as catalysts are described. Particularly significant was the discovery that rhodium(II) (S)-mandelate acts as a very efficient catalyst for α-diazoketone decompositions, in general. Moderate asymmetric induction was possible in the decomposition of α-diazoketones with chiral rhodium(II) carboxylates, with rhodium(II) (S)-mandelate being one of the more enantioselective catalysts investigated. However, the asymmetric induction obtained was very dependent on the exact structure of the α-diazoketone, the catalyst, and the nature of the reaction. Chapter 5 contains the experimental details, and the spectral and analytical data for all new compounds reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary objective of this thesis was the preparation of a series of pyridine-containing α-diazocarbonyl compounds and subsequent investigation of the reactivity of these compounds on exposure to transition metal catalysts. In particular, the reactivity of the pyridyl α-diazocarbonyls was compared to that of the analogous phenyl α-diazocarbonyl compounds to ascertain the impact of replacement of the phenyl ring with pyridine. The first chapter initially provides a brief introduction into α-diazocarbonyl chemistry, comprising a compendium of well-established and recently developed methods in the preparation of these compounds, as well as an outline of the reactivity of these versatile substrates. The substantive element of this introductory chapter comprises a detailed review focused on transition metal-catalysed transformations of heterocyclic α-diazocarbonyl compounds, highlighting the extraordinary diversity of reaction products which can be accessed. This review is undertaken to set the work of this thesis in context. The results of this research are discussed in the second and third chapters together with the associated experimental details, including spectroscopic and analytical data obtained in the synthesis of all compounds during this research. The second chapter describes the preparation of a range of novel pyridine-containing α-diazocarbonyl compounds via a number of synthetic strategies including both acylation and diazo transfer methodologies. In contrast to the phenyl analogues, the generation of the pyridine α-diazocarbonyl substrates was complicated by a number of factors including the inherent basicity of the pyridine ring, tautomerism and existence of rotamers. Rhodium- and copper-mediated transformations of the pyridine-containing α-diazocarbonyl compounds is discussed in detail displaying very different reactivity patterns to those seen with the phenyl analogues; oxidation to 2,3- diketones, 1,2-hydride shift to form enones and oxonium and sulfonium ylide formation/rearrangement are prominent in the pyridyl series, with no evidence of aromatic addition to the pyridine ring. The third chapter focuses on exploration of novel chiral rhodium(II) catalysts, developed in the Maguire team, in both intermolecular cyclopropanations and intramolecular C–H insertion reactions. In this chapter, the studies are focused on standard α-diazocarbonyl compounds without heteroaryl substituents. The most notable outcome was the achievement of high enantiopurities for intramolecular C–H insertions, which were competitive with, and even surpassed, established catalyst systems in some cases. This work has provided insight into solvent and temperature effects on yields as well as enantio- and diastereoselectivity, thereby providing guidance for future development and design of chiral rhodium carboxylate catalysts. While this is a preliminary study, the significance of the results lie in the fact that these are the first reactions to give substantial asymmetric induction with these novel rhodium carboxylates. While the majority of the α-diazocarbonyl compounds explored in this work were α-diazoketones, a number of α-diazoesters are also described. Details of chiral stationary phase HPLC analysis, single crystal analysis and 2D NMR experiments are included in the Appendix (Appendix III-V).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

. Knight, David W.; Lewis, Neil; Share, Andrew C.; Haigh, David. Chem. Dept., Univ. of Nottingham, Nottingham, UK. Tetrahedron: Asymmetry (1993), 4(4), 625-8. CODEN: TASYE3 ISSN: 0957-4166. Journal written in English. CAN 120:54423 AN 1994:54423 CAPLUS (Copyright (C) 2009 ACS on SciFinder (R)) Abstract Redn. of the keto-piperidinecarboxylates I and II with fermenting bakers' yeast produced the corresponding hydroxy-esters III and IV in good yields with >99% diastereomeric excess and >93% enantiomeric excess in both cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New chiral dirhodium(II) carboxylates were prepd. from Rh2(OAc)4 and half phthalate esters and or pyrroles. Their use as catalysts for the decompn. of diazocarbonyl compds. studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general method to prepare organic-inorganic hybrid aerogels has been presented. A series of organic-inorganic hybrid aerogels were successfully produced from 3d trivalent transition metals (Cr3+, Fe3+) and bridging carboxylic acids. Gelation of the Cr(III) gels was achieved by heating the precursor solution to temperatures above 80 degrees C, which is in sharp contrast to usual supramolecular gels. Among a range of ligands used, highly porous aerogels could be prepared from rigid carboxylate, e.g. 1,4-benzenedicarboxylate and 1,3,5-benzenetricarboxylate. The porous aerogels can be described as a coherent, rigid spongy network of continuous nanometre-sized particles, which is significantly different from the usual fibrous network of supramolecular gels. The aerogels have tunable porous structures with micro-and mesoporosity depending on their reactant concentrations. Their surface areas, pore volumes, and average pore sizes were analysed by using nitrogen sorption, and the accessibility of the pores to bulky molecules was also evaluated. It represents a strategy to prepare hybrid materials with large porosity utilising structurally simple building blocks as precursors.