11 resultados para CACHACAS
Resumo:
Cachaca was aged for 6 months in small casks of oak and eight different Brazilian woods (amarelo, amendoim, balsamo, jatoba, louro, pau d'arco, pau d'oleo, and pereiro) in order to determine total phenols, UV-visible spectra differences, and sensorial acceptance. Also used were 200-l casks of oak and pereiro for aging cachaca for 4 years to characterize sensorial descriptors and acceptance. The results suggest that amendoim and pereiro followed by jatobaa are good candidates to replace oak in the construction of cachaca aging casks. It was also observed that when using oak casks as a standard the major changes in the sensory properties occurred in the first 21 months of aging. The principal components analysis of UV-visible absorption spectra of the same beverage stored in casks made of different woods allowed identification of the wood in which the beverage had been aged.
Resumo:
Multivariate analyses of UV-Vis spectral data from cachaca wood extracts provide a simple and robust model to classify aged Brazilian cachacas according to the wood species used in the maturation barrels. The model is based on inspection of 93 extracts of oak and different Brazilian wood species by a non-aged cachaca used as an extraction solvent. Application of PCA (Principal Components Analysis) and HCA (Hierarchical Cluster Analysis) leads to identification of 6 clusters of cachaca wood extracts (amburana, amendoim, balsamo, castanheira, jatoba, and oak). LDA (Linear Discriminant Analysis) affords classification of 10 different wood species used in the cachaca extracts (amburana, amendoim, balsamo, cabreuva-parda, canela-sassafras, castanheira, jatoba, jequitiba-rosa, louro-canela, and oak) with an accuracy ranging from 80% (amendoim and castanheira) to 100% (balsamo and jequitiba-rosa). The methodology provides a low-cost alternative to methods based on liquid chromatography and mass spectrometry to classify cachacas aged in barrels that are composed of different wood species.
Resumo:
An analytical procedure for the separation and quantification of 20 amino acids in cachacas has been developed involving C18 solid phase cleanup, derivatization with o-phthalaldehyde/2-mercaptoethanol, and reverse phase liquid chromatography with fluorescence detection. The detection limit was between 0.0050 (Cys) and 0.25 (Ser) mg L-1, whereas the recovery index varies from 69.5 (Lys) to 100 (Tyr)%. Relative standard deviations vary from 1.39 (Trp) to 13.4 (Glu)% and from 3.08 (Glu) to 13.5 (His) for the repeatability and intermediate precision, respectively. From the quantitative profile of amino acids in 41 cachacas, 5 turns, and 12 whisky samples, the following order of amino acids in significant quantities is observed: Gly = Ser < Cys < Ile < His < Pro = Asp < Asn < Tyr for cachaca; Phe < Glu = Gln = Val = Ala < His = Gly Thr = Arg = Tyr < Asn Ser = Lys = Pro < Cys = Asp for rum; and Ala = Asn < Trp < Gln = His = Met = Ile = Cys < Thr < Asp Leu < Phe = Lys < Ser = Gly = Tyr = Val < Glu = Pro < Arg for whisky samples. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The formation of dextran deposits in sugared Brazilian cachaca was studied as a function of the time considering the effects of temperature, molecular weight (M(w)), visible light, pH, and the presence of Ca, Mg, Cu, and Fe ions in the concentrations at which they are usually present in this beverage. At 25 degrees C and pH 4.4, the experimental half-lives (t(1/2)) for precipitation are 73 and 124 days for dextrans with M(w) 5.9 x 10(6) and 2.1 x 10(6) Da, respectively. For dextrans with M(w) 5.0 x 10(5) and 4.0 x 10(4) Da, the experimental t(1/2) values are >180 days. For a dextran with M(w) 2.1 x 10(6) Da a change in pH from 4.4 to 5.5 at 25 degrees C resulted in a t(1/2) decrease from 124 to 25 days. At pH 4.4 the visible light and the presence of metal ions in average concentrations usually found in cachacas do not exhibit noticeable influence on the rate of dextran precipitation.
Resumo:
The dextran molecular mass distribution profile in 77 sugar samples from Brazil and twelve insoluble deposits (alcoholic flocks) samples from sugared cachacas (Brazilian sugar cane spirit) is described in terms of number-average molecular mass M,,, weight-average molecular mass M(w), Z-average molecular mass M,, and polydispersity. The analyses were performed by size-exclusion chromatography, using a refractive index detector. In most of the sugar samples, it was possible to identify two major groups of dextrans with Mw averages of 5 x 10(6) and 5 x 10(4) Da. Based on the evaluated parameters, the dextran distribution profile is about the same in samples analyzed over five seasons, and, therefore, it is likely that the Brazilian product pattern will not change very much over the years. In insoluble deposits from sugared cachacas, dextrans with Mw values in the order of the 10(5) Da were the most frequent ones, being present in 58% of the samples. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The influence of consumer expectation on the acceptability of four samples of commercial brands of organic and conventional cachaca was assessed by fifty-six consumers. The cachacas were evaluated in blind sensory test, expectation test and real sensory test. In blind test, consumers evaluated the samples in absence of any expectation, followed by expectation test, when consumers had read organic cachaca information and indicated how much they expected to like or dislike the drink and finally, in real test, evaluated the drink with information and carry through new sensory evaluation. The assessed attributes were appearance, overall liking, flavor liking and purchase intention. Information of organic cachaca had positive influence on sensory acceptance and improved buying intention of all evaluated cachacas. Predominant effect were assimilation under negative disconfirmation, that is, although cachacas samples were not as well received by consumers as expected, consumers higher expectations resulted in higher acceptance of the samples, whether they were organic or not. The effect of consumer expectation on the acceptability of the beverage was statistically significant (p <= 0.05) for all samples evaluated.
Resumo:
The analysis of alcoholic beverages for the important carcinogenic contaminant ethyl carbamate is very time-consuming and expensive. Due to possible matrix interferences, sample cleanup using diatomaceous earth (Extrelut) column is required prior to gas chromatographic and mass spectrometric measurement. A limiting step in this process is the rotary evaporation of the eluate containing the analyte in organic solvents, which is currently conducted manually and requires approximately 20-30 min per sample. This paper introduces the use of a parallel evaporation device for ethyl carbamate analysis, which allows for the simultaneous evaporation of 12 samples to a specified residual volume without manual intervention. A more efficient and, less expensive analysis is therefore possible. The method validation showed no differences between the fully-automated parallel evaporation and the manual operation. The applicability was proven by analyzing authentic spirit samples from Germany, Canada and Brazil. It is interesting to note that Brazilian cachacas had a relatively high incidence for ethyl carbamate contamination (55% of all samples were above 0.15 mg/l), which may be of public health relevance and requires further evaluation.
Resumo:
Concentrations of 39 organic compounds were determined in three fractions (head, heart and tail) obtained from the pot still distillation of fermented sugarcane juice. The results were evaluated using analysis of variance (ANOVA), Tukey's test, principal component analysis (PCA), hierarchical cluster analysis (HCA) and linear discriminant analysis (LDA). According to PCA and HCA, the experimental data lead to the formation of three clusters. The head fractions give rise to a more defined group. The heart and tail fractions showed some overlap consistent with its acid composition. The predictive ability of calibration and validation of the model generated by LDA for the three fractions classification were 90.5 and 100%, respectively. This model recognized as the heart twelve of the thirteen commercial cachacas (92.3%) with good sensory characteristics, thus showing potential for guiding the process of cuts.
Resumo:
IDENTIFICATION OF ETHANOLIC WOOD EXTRACTS USING ELECTRONIC ABSORPTION SPECTRUM AND MULTIVARIATE ANALYSIS. The application of multivariate analysis to spectrophotometric (UV) data was explored for distinguishing extracts of cachaca woods commonly used in the manufacture of casks for aging cachacas (oak, cabretiva-parda, jatoba, amendoim and canela-sassafras). Absorbances close to 280 nm were more strongly correlated with oak and jatoba woods, whereas absorbances near 230 nm were more correlated with canela-sassafras and cabretiva-parda. A comparison between the spectrophotometric model and the model based on chromatographic (HPLC-DAD) data was carried out. The spectrophotometric model better explained the variance data (PC1 + PC2 = 91%) exhibiting potential as a routine method for checking aged spirits.
Resumo:
CHEMICAL PROFILE COMPARISON OF SUGARCANE SPIRITS FROM THE SAME WINE DISTILLED IN ALEMBICS AND COLUMNS. Six wines were distilled in two different distillation apparatus (alembic and column) producing 24 distillates (6 for each alembic fraction - head, heart and tail; 6 column distillates). The chemical composition of distillates from the same wine was determined using chromatographic techniques. Analytical data were subjected to Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) allowing discrimination of four clusters according to chemical profiles. Both distillation processes influenced the sugarcane spirits chemical quality since two types of distillates with different quantitative chemical profiles were produced after the elimination of fermentation step influence.
Resumo:
The aim of this study was to verify the effect of a double distillation on the reduction of the ethyl carbamate content in sugar cane spirit. Ethyl carbamate is a potentially carcinogenic compound normally present at critical levels in sugar cane spirit, constituting a public health problem and therefore hindering the export of this beverage. The ethanol, copper and ethyl carbamate contents were evaluated, using gas chromatography/mass spectroscopy, during a double distillation of the fermented sugar cane juice. The distillate fraction from the first distillation accumulated 30% of the ethyl carbamate formed. In the second distillation, the ethyl carbamate and the copper content increased during the process as the alcohol content decreased, and only 3% of the ethyl carbamate formed was collected in the spirit. Double distillation decreased the ethyl carbamate content in the sugar cane spirit by 97%. (C) Copyright 2012 The Institute of Brewing & Distilling