993 resultados para C. jejuni
Resumo:
Campylobacter jejuni is a zoonotic bacterial pathogen of worldwide importance. It is estimated that 460,000 human infections occur in the United Kingdom per annum and these involve acute enteritis and may be complicated by severe systemic sequelae. Such infections are frequently associated with the consumption of contaminated poultry meat and strategies to control C. jejuni in poultry are expected to limit pathogen entry into the food chain and the incidence of human disease. Toward this aim, a total of 840 Light Sussex chickens were used to evaluate a Salmonella enterica serovar Typhimurium ΔaroA vaccine expressing the C. jejuni amino acid binding protein CjaA as a plasmid-borne fusion to the C-terminus of fragment C of tetanus toxin. Chickens were given the vaccine at 1-day-old and two weeks later by oral gavage, then challenged after a further two weeks with C. jejuni. Across six biological replicates, statistically significant reductions in caecal C. jejuni of c. 1.4 log10 colony-forming units/g were observed at three and four weeks post-challenge relative to age-matched unvaccinated birds. Protection was associated with the induction of CjaA-specific serum IgY and biliary IgA. Protection was not observed using a vaccine strain containing the empty plasmid. Vaccination with recombinant CjaA subcutaneously at the same intervals significantly reduced the caecal load of C. jejuni at three and four weeks post-challenge. Taken together these data imply that responses directed against CjaA, rather than competitive or cross-protective effects mediated by the carrier, confer protection. The impact of varying parameters on the efficacy of the S. Typhimurium ΔaroA vaccine expressing TetC-CjaA was also tested. Delaying the age at primary vaccination had little impact on protection or humoral responses to CjaA. The use of the parent strain as carrier or changing the attenuating mutation of the carrier to ΔspaS or ΔssaU enhanced the protective effect, consistent with increased invasion and persistence of the vaccine strains relative to the ΔaroA mutant. Expression in the ΔaroA strain of a TetC fusion to Peb1A, but not TetC fusions to GlnH or ChuA, elicited protection against intestinal colonisation by C. jejuni that was comparable to that observed with the TetC-CjaA fusion. Our data are rendered highly relevant by use of the target host in large numbers and support the potential of CjaA- and Peb1A-based vaccines for control of C. jejuni in poultry. © 2009 Elsevier Ltd. All rights reserved.
Resumo:
Campylobacter, mainly Campylobacter jejuni and C. coli, are worldwide recognized as a major cause of bacterial food-borne gastroenteritis. Epidemiological studies have shown handling or eating of poultry to be significant risk factors for human infections. Campylobacter contamination can occur at all stages of a poultry meat production cycle. The aim of this thesis was to study the occurrence and diversity of Campylobacter in broiler and turkey production in Finland. In summer 1999, 2.9 % of slaughtered broiler flocks were Campylobacter-positive. From the isolated strains 94 % were C. jejuni and 6% were C. coli. During years 2005-2006 one turkey parent flock, the hatchery, six different commercial turkey farms and different stages of the slaughterhouse were monitored during one and the half year. No Campylobacter were detected in either of the samples from the turkey parent flock or from the hatchery using the culture method. Instead PCR detected DNA of Campylobacter from the turkey parent flock and samples from the hatchery. Six out of 12 commercial turkey flocks were found negative at the farm level but only two of those were negative at slaughter. Campylobacter-positive samples within the flock at slaughter were detected between 0% and 94% with evisceration and chilling water being the most critical stages for contamination. All of Campylobacter isolates were shown to be C. jejuni. Campylobacter-positive turkey flocks were colonized by a limited number of Campylobacter genotypes both at the farm and slaughter level. In conclusion, in our first study in 1999 a low prevalence of Campylobacter in Finnish broiler flocks was detected and it has remained at a low level during the study period until the present. In the turkey meat production, we found that flocks which were negative at the farm became contaminated with Campylobacter at the slaughter process. These results suggest that proper and efficient cleaning and disinfection of slaughter and processing premises are needed to avoid cross-contamination. Prevention of colonization at the farm by a high level of biosecurity control and hygiene may be one of the most efficient ways to reduce the amount of Campylobacter-positive poultry meat in Finland. With a persistent low level of Campylobacter-positive flocks, it could be speculated that the use of logistic slaughtering, according to Campylobacter status at farm, might have be advantageous in reducing Campylobacter contamination of retail poultry products. However, the significance of the domestic poultry meat for human campylobacteriosis in Finland should be evaluated.
Resumo:
Campylobacter, mainly Campylobacter jejuni and C. coli, are worldwide recognized as a major cause of bacterial food-borne gastroenteritis (World Health Organization 2010). Epidemiological studies have shown handling or eating of poultry to be significant risk factors for human infections. Campylobacter contamination can occur at all stages of a poultry meat production cycle. In summer 1999, every broiler flock from all three major Finnish poultry slaughterhouses was studied during a five month period. Caecal samples were taken in the slaughterhouses from five birds per flock. A total of 1 132 broiler flocks were tested and 33 (2.9%) of those were Campylobacter-positive. Thirty-one isolates were identified as C. jejuni and two isolates were C. coli. The isolates were serotyped for heat-stable antigens (HS) and genotyped by pulsed-field gel electrophoresis (PFGE). The most common serotypes found were HS 6,7, 12 and 4-complex. Using a combination of SmaI and KpnI patterns, 18 different PFGE types were identified. Thirty-five Finnish C. jejuni strains with five SmaI/SacII PFGE types selected among human and chicken isolates from 1997 and 1998 were used for comparison of their PFGE patterns, amplified fragment length polymorphism (AFLP) patterns, HaeIII ribotypes, and HS serotypes. The discriminatory power of PFGE, AFLP and ribotyping with HaeIII were shown to be at the same level for this selected set of strains, and these methods assigned the strains into the same groups. The PFGE and AFLP patterns within a genotype were highly similar, indicating genetic relatedness. An HS serotype was distributed among different genotypes, and different serotypes were identified within one genotype. From one turkey parent flock, the hatchery, six different commercial turkey farms (together 12 flocks) and from 11 stages at the slaughterhouse a total of 456 samples were collected during one and the half year. For the detection of Campylobacter both conventional culture and a PCR method were used. No Campylobacter were detected in either of the samples from the turkey parent flock or from the hatchery samples using the culture method. Instead PCR detected DNA of Campylobacter in five faecal samples from the turkey parent flock and in one fluff and an eggshell sample. Six out of 12 commercial turkey flocks were found negative at the farm level but only two of those were negative at slaughter. Campylobacter-positive samples within the flock at slaughter were detected between 0% and 94%, with evisceration and chilling water being the most critical stages for contamination. All of a total of 121 Campylobacter isolates were shown to be C. jejuni using a multiplex PCR assay. PFGE analysis of all isolates with KpnI restriction enzyme resulted in 11 PFGE types (I-XI) and flaA-SVR typing yielded nine flaA-SVR alleles. Three Campylobacter-positive turkey flocks were colonized by a limited number of Campylobacter genotypes both at the farm and slaughter level.In conclusion, in our first study in 1999 a low prevalence of Campylobacter in Finnish broiler flocks was detected and it has remained at a low level during the study period until the present. In the turkey meat production, we found that flocks which were negative at the farm became contaminated with Campylobacter at the slaughter process. These results suggest that proper and efficient cleaning and disinfection of slaughter and processing premises are needed to avoid cross-contamination. Prevention of colonization at the farm by a high level of biosecurity control and hygiene may be one of the most efficient ways to reduce the amount of Campylobacter-positive poultry meat in Finland. In Finland, with a persistent low level of Campylobacter-positive flocks, it could be speculated that the use of logistic slaughtering, according to Campylobacter status at farm, might have be advantageous in reducing Campylobacter contamination of retail poultry products. However, the significance of the domestic poultry meat for human campylobacteriosis in Finland should be evaluated.
Resumo:
The highly variable flagellin-encoding flaA gene has long been used for genotyping Campylobacter jejuni and Campylobacter coli. High-resolution melting (HRM) analysis is emerging as an efficient and robust method for discriminating DNA sequence variants. The objective of this study was to apply HRM analysis to flaA-based genotyping. The initial aim was to identify a suitable flaA fragment. It was found that the PCR primers commonly used to amplify the flaA short variable repeat (SVR) yielded a mixed PCR product unsuitable for HRM analysis. However, a PCR primer set composed of the upstream primer used to amplify the fragment used for flaA restriction fragment length polymorphism (RFLP) analysis and the downstream primer used for flaA SVR amplification generated a very pure PCR product, and this primer set was used for the remainder of the study. Eighty-seven C. jejuni and 15 C. coli isolates were analyzed by flaA HRM and also partial flaA sequencing. There were 47 flaA sequence variants, and all were resolved by HRM analysis. The isolates used had previously also been genotyped using single-nucleotide polymorphisms (SNPs), binary markers, CRISPR HRM, and flaA RFLP. flaAHRManalysis provided resolving power multiplicative to the SNPs, binary markers, and CRISPR HRM and largely concordant with the flaA RFLP. It was concluded that HRM analysis is a promising approach to genotyping based on highly variable genes.
Resumo:
Campylobacter jejuni followed by Campylobacter coli contribute substantially to the economic and public health burden attributed to food-borne infections in Australia. Genotypic characterisation of isolates has provided new insights into the epidemiology and pathogenesis of C. jejuni and C. coli. However, currently available methods are not conducive to large scale epidemiological investigations that are necessary to elucidate the global epidemiology of these common food-borne pathogens. This research aims to develop high resolution C. jejuni and C. coli genotyping schemes that are convenient for high throughput applications. Real-time PCR and High Resolution Melt (HRM) analysis are fundamental to the genotyping schemes developed in this study and enable rapid, cost effective, interrogation of a range of different polymorphic sites within the Campylobacter genome. While the sources and routes of transmission of campylobacters are unclear, handling and consumption of poultry meat is frequently associated with human campylobacteriosis in Australia. Therefore, chicken derived C. jejuni and C. coli isolates were used to develop and verify the methods described in this study. The first aim of this study describes the application of MLST-SNP (Multi Locus Sequence Typing Single Nucleotide Polymorphisms) + binary typing to 87 chicken C. jejuni isolates using real-time PCR analysis. These typing schemes were developed previously by our research group using isolates from campylobacteriosis patients. This present study showed that SNP + binary typing alone or in combination are effective at detecting epidemiological linkage between chicken derived Campylobacter isolates and enable data comparisons with other MLST based investigations. SNP + binary types obtained from chicken isolates in this study were compared with a previously SNP + binary and MLST typed set of human isolates. Common genotypes between the two collections of isolates were identified and ST-524 represented a clone that could be worth monitoring in the chicken meat industry. In contrast, ST-48, mainly associated with bovine hosts, was abundant in the human isolates. This genotype was, however, absent in the chicken isolates, indicating the role of non-poultry sources in causing human Campylobacter infections. This demonstrates the potential application of SNP + binary typing for epidemiological investigations and source tracing. While MLST SNPs and binary genes comprise the more stable backbone of the Campylobacter genome and are indicative of long term epidemiological linkage of the isolates, the development of a High Resolution Melt (HRM) based curve analysis method to interrogate the hypervariable Campylobacter flagellin encoding gene (flaA) is described in Aim 2 of this study. The flaA gene product appears to be an important pathogenicity determinant of campylobacters and is therefore a popular target for genotyping, especially for short term epidemiological studies such as outbreak investigations. HRM curve analysis based flaA interrogation is a single-step closed-tube method that provides portable data that can be easily shared and accessed. Critical to the development of flaA HRM was the use of flaA specific primers that did not amplify the flaB gene. HRM curve analysis flaA interrogation was successful at discriminating the 47 sequence variants identified within the 87 C. jejuni and 15 C. coli isolates and correlated to the epidemiological background of the isolates. In the combinatorial format, the resolving power of flaA was additive to that of SNP + binary typing and CRISPR (Clustered regularly spaced short Palindromic repeats) HRM and fits the PHRANA (Progressive hierarchical resolving assays using nucleic acids) approach for genotyping. The use of statistical methods to analyse the HRM data enhanced sophistication of the method. Therefore, flaA HRM is a rapid and cost effective alternative to gel- or sequence-based flaA typing schemes. Aim 3 of this study describes the development of a novel bioinformatics driven method to interrogate Campylobacter MLST gene fragments using HRM, and is called ‘SNP Nucleated Minim MLST’ or ‘Minim typing’. The method involves HRM interrogation of MLST fragments that encompass highly informative “Nucleating SNPS” to ensure high resolution. Selection of fragments potentially suited to HRM analysis was conducted in silico using i) “Minimum SNPs” and ii) the new ’HRMtype’ software packages. Species specific sets of six “Nucleating SNPs” and six HRM fragments were identified for both C. jejuni and C. coli to ensure high typeability and resolution relevant to the MLST database. ‘Minim typing’ was tested empirically by typing 15 C. jejuni and five C. coli isolates. The association of clonal complexes (CC) to each isolate by ‘Minim typing’ and SNP + binary typing were used to compare the two MLST interrogation schemes. The CCs linked with each C. jejuni isolate were consistent for both methods. Thus, ‘Minim typing’ is an efficient and cost effective method to interrogate MLST genes. However, it is not expected to be independent, or meet the resolution of, sequence based MLST gene interrogation. ‘Minim typing’ in combination with flaA HRM is envisaged to comprise a highly resolving combinatorial typing scheme developed around the HRM platform and is amenable to automation and multiplexing. The genotyping techniques described in this thesis involve the combinatorial interrogation of differentially evolving genetic markers on the unified real-time PCR and HRM platform. They provide high resolution and are simple, cost effective and ideally suited to rapid and high throughput genotyping for these common food-borne pathogens.
Resumo:
A novel method for genotyping the clustered, regularly interspaced short-palindromic-repeat (CRISPR) locus of Campylobacter jejuni is described. Following real-time PCR, CRISPR products were subjected to high-resolution melt (HRM) analysis, a new technology that allows precise melt profile determination of amplicons. This investigation shows that the CRISPR HRM assay provides a powerful addition to existing C. jejuni genotyping methods and emphasizes the potential of HRM for genotyping short sequence repeats in other species
Resumo:
Objectives: The aim of this study was to determine the antimicrobial resistance patterns of 125 Campylobacter jejuni and 27 Campylobacter coli isolates from 39 Queensland broiler farms. Methods: Two methods, a disc diffusion assay and an agar-based MIC assay, were used. The disc diffusion was performed and interpreted as previously described (Huysmans MB, Turnidge JD. Disc susceptibility testing for thermophilic campylobacters. Pathology 1997; 29: 209–16), whereas the MIC assay was performed according to CLSI (formerly NCCLS) methods and interpreted using DANMAP criteria. Results: In both assays, no C. jejuni or C. coli isolates were resistant to ciprofloxacin or chloramphenicol, no C. coli were resistant to nalidixic acid, and no C. jejuni were resistant to erythromycin. In the MIC assay, no C. jejuni isolate was resistant to nalidixic acid, whereas three isolates (2.4%) were resistant in the disc assay. The highest levels of resistance of the C. jejuni isolates were recorded for tetracycline (19.2% by MIC and 18.4% by disc) and ampicillin (19.2% by MIC and 17.6% by disc). The C. coli isolates gave very similar results (tetracycline resistance 14.8% by both MIC and disc; ampicillin resistance 7.4% by MIC and 14.8% by disc). Conclusions: This work has shown that the majority of C. jejuni and C. coli isolates were susceptible to the six antibiotics tested by both disc diffusion and MIC methods. Disc diffusion represents a suitable alternative methodology to agar-based MIC methods for poultry Campylobacter isolates.
Resumo:
The principal objective of this study was to determine if Campylobacter jejuni genotyping methods based upon resolution optimised sets of single nucleotide polymorphisms (SNPs) and binary genetic markers were capable of identifying epidemiologically linked clusters of chicken-derived isolates. Eighty-eight C. jejuni isolates of known flaA RFLP type were included in the study. They encompassed three groups of ten isolates that were obtained at the same time and place and possessed the same flaA type. These were regarded as being epidemiologically linked. Twenty-six unlinked C. jejuni flaA type I isolates were included to test the ability of SNP and binary typing to resolve isolates that were not resolved by flaA RFLP. The remaining isolates were of different flaA types. All isolates were typed by real-time PCR interrogation of the resolution optimised sets of SNPs and binary markers. According to each typing method, the three epidemiologically linked clusters were three different clones that were well resolved from the other isolates. The 26 unlinked C. jejuni flaA type I isolates were resolved into 14 SNP-binary types, indicating that flaA typing can be unreliable for revealing epidemiological linkage. Comparison of the data with data from a fully typed set of isolates associated with human infection revealed that abundant lineages in the chicken isolates that were also found in the human isolates belonged to clonal complex (CC) -21 and CC-353, with the usually rare C-353 member ST-524 being especially abundant in the chicken collection. The chicken isolates selected to be diverse according to flaA were also diverse according to SNP and binary typing. It was observed that CC-48 was absent in the chicken isolates, despite being very common in Australian human infection isolates, indicating that this may be a major cause of human disease that is not chicken associated.
Resumo:
The highly variable flagellin-encoding flaA gene has long been used for genotyping Campylobacter jejuni and Campylobacter coli. High-resolution melting (HRM) analysis is emerging as an efficient and robust method for discriminating DNA sequence variants. The objective of this study was to apply HRM analysis to flaA-based genotyping. The initial aim was to identify a suitable flaA fragment. It was found that the PCR primers commonly used to amplify the flaA short variable repeat (SVR) yielded a mixed PCR product unsuitable for HRM analysis. However, a PCR primer set composed of the upstream primer used to amplify the fragment used for flaA restriction fragment length polymorphism (RFLP) analysis and the downstream primer used for flaA SVR amplification generated a very pure PCR product, and this primer set was used for the remainder of the study. Eighty-seven C. jejuni and 15 C. coli isolates were analyzed by flaA HRM and also partial flaA sequencing. There were 47 flaA sequence variants, and all were resolved by HRM analysis. The isolates used had previously also been genotyped using single-nucleotide polymorphisms (SNPs), binary markers, CRISPR HRM, and flaA RFLP.flaA HRM analysis provided resolving power multiplicative to the SNPs, binary markers, and CRISPR HRM and largely concordant with the flaA RFLP. It was concluded that HRM analysis is a promising approach to genotyping based on highly variable genes.
Resumo:
We have constructed plasmids to be used for in vitro signature-tagged mutagenesis (STM) of Campylobacter jejuni and used these to generate STM libraries in three different strains. Statistical analysis of the transposon insertion sites in the C. jejuni NCTC 11168 chromosome and the plasmids of strain 81-176 indicated that their distribution was not uniform. Visual inspection of the distribution suggested that deviation from uniformity was not due to preferential integration of the transposon into a limited number of hot spots but rather that there was a bias towards insertions around the origin. We screened pools of mutants from the STM libraries for their ability to colonize the ceca of 2-week-old chickens harboring a standardized gut flora. We observed high-frequency random loss of colonization proficient mutants. When cohoused birds were individually inoculated with different tagged mutants, random loss of colonization-proficient mutants was similarly observed, as was extensive bird-to-bird transmission of mutants. This indicates that the nature of campylobacter colonization in chickens is complex and dynamic, and we hypothesize that bottlenecks in the colonization process and between-bird transmission account for these observations.
Resumo:
This study characterizes the interaction between Campylobacter jejuni and the 16 phages used in the United Kingdom typing scheme by screening spontaneous mutants of the phage-type strains and transposon mutants of the sequenced strain NCTC 11168. We show that the 16 typing phages fall into four groups based on their patterns of activity against spontaneous mutants. Screens of transposon and defined mutants indicate that the phage-bacterium interaction for one of these groups appears to involve the capsular polysaccharide (CPS), while two of the other three groups consist of flagellatropic phages. The expression of CPS and flagella is potentially phase variable in C. jejuni, and the implications of these findings for typing and intervention strategies are discussed.
Resumo:
Campylobacter jejuni is an important food-borne pathogen. However, relatively little is understood regarding its pathogenesis, and research is hampered by the lack of a suitable model. Recently, a number of groups have developed assays to study the pathogenic mechanisms of C. jejuni using cell culture models. Here, we report the development of an ex vivo organ culture model, allowing for the maintenance of intestinal mucosal tissue, to permit more complex host-bacterium interactions to be studied. Ex vivo organ culture highlights the propensity for C. jejuni to adhere to mucosal tissue via the flagellum, either as discrete colonies or as multicellular units.
Resumo:
Campylobacter jejuni is a prevalent cause of food-borne diarrhoeal illness in humans. Understanding of the physiological and metabolic capabilities of the organism is limited. We report a detailed analysis of the C. jejuni growth cycle in batch culture. Combined transcriptomic, phenotypic and metabolic analysis demonstrates a highly dynamic 'stationary phase', characterized by a peak in motility, numerous gene expression changes and substrate switching, despite transcript changes that indicate a metabolic downshift upon the onset of stationary phase. Video tracking of bacterial motility identifies peak activity during stationary phase. Amino acid analysis of culture supernatants shows a preferential order of amino acid utilization. Proton NMR (1H-NMR) highlights an acetate switch mechanism whereby bacteria change from acetate excretion to acetate uptake, most probably in response to depletion of other substrates. Acetate production requires pta (Cj0688) and ackA (Cj0689), although the acs homologue (Cj1537c) is not required. Insertion mutants in Cj0688 and Cj0689 maintain viability less well during the stationary and decline phases of the growth cycle than wild-type C. jejuni, suggesting that these genes, and the acetate pathway, are important for survival.
Resumo:
Transposon mutagenesis has been applied to a hyper-invasive clinical isolate of Campylobacter jejuni, 01/51. A random transposon mutant library was screened in an in vitro assay of invasion and 26 mutants with a significant reduction in invasion were identified. Given that the invasion potential of C. jejuni is relatively poor compared to other enteric pathogens, the use of a hyper-invasive strain was advantageous as it greatly facilitated the identification of mutants with reduced invasion. The location of the transposon insertion in 23 of these mutants has been determined; all but three of the insertions are in genes also present in the genome-sequenced strain NCTC 11168. Eight of the mutants contain transposon insertions in one region of the genome (approximately 14 kb), which when compared with the genome of NCTC 11168 overlaps with one of the previously reported plasticity regions and is likely to be involved in genomic variation between strains. Further characterization of one of the mutants within this region has identified a gene that might be involved in adhesion to host cells.