989 resultados para C. elegans


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe here two new transposable elements, CemaT4 and CemaT5, that were identified within the sequenced genome of Caenorhabditis elegans using homology based searches. Five variants of CemaT4 were found, all non-autonomous and sharing 26 bp inverted terminal repeats (ITRs) and segments (152-367 bp) of sequence with similarity to the CemaT1 transposon of C. elegans. Sixteen copies of a short, 30 bp repetitive sequence, comprised entirely of an inverted repeat of the first 15 bp of CemaT4's ITR, were also found, each flanked by TA dinucleotide duplications, which are hallmarks of target site duplications of mariner-Tc transposon transpositions. The CemaT5 transposable element had no similarity to maT elements, except for sharing identical ITR sequences with CemaT3. We provide evidence that CemaT5 and CemaT3 are capable of excising from the C. elegans genome, despite neither transposon being capable of encoding a functional transposase enzyme. Presumably, these two transposons are cross-mobilised by an autonomous transposon that recognises their shared ITRs. The excisions of these and other non-autonomous elements may provide opportunities for abortive gap repair to create internal deletions and/or insert novel sequence within these transposons. The influence of non-autonomous element mobility and structural diversity on genome variation is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A doença de Machado-Joseph (DMJ) ou ataxia espinocerebelosa do tipo 3 (SCA3), conhecida por ser a mais comum das ataxias hereditárias dominantes em todo o mundo, é uma doença neurodegenerativa autossómica dominante que leva a uma grande incapacidade motora, embora sem alterar o intelecto, culminando com a morte do doente. Atualmente não existe nenhum tratamento eficaz para esta doença. A DMJ é resultado de uma alteração genética causada pela expansão de uma sequência poliglutamínica (poliQ), na região C-terminal do gene que codifica a proteína ataxina-3 (ATXN3). Os mecanismos celulares das doenças de poliglutaminas que provocam toxicidade, bem como a função da ATXN3, não são ainda totalmente conhecidos. Neste trabalho, usamos, pela sua simplicidade e potencial genético, um pequeno animal invertebrado, o nemátode C. elegans, com o objetivo de identificar fármacos eficazes para o combate contra a patogénese da DMJ, analisando simultaneamente o seu efeito na agregação da ATXN3 mutante nas ©lulas neuronais in vivo e o seu impacto no comportamento motor dos animais. Este pequeno invertebrado proporciona grandes vantagens no estudo dos efeitos tóxicos de proteínas poliQ nos neurónios, uma vez que a transparência das suas 959 ©lulas (das quais 302 são neurónios) facilita a deteção de proteínas fluorescentes in vivo. Para além disso, esta espécie tem um ciclo de vida curto, é económica e de fácil manutenção. Neste trabalho testámos no nosso modelo transgénico da DMJ com 130Qs em C.elegans dois compostos potencialmente moduladores da agregação da ATXN3 mutante e da resultante disfunção neurológica, atuando pela via da autofagia. De modo a validar a possível importância terapêutica da ativação da autofagia os compostos candidatos escolhidos foram o Litío e o análogo da Rapamicina CCI-779, testados independentemente e em combinação. A neuroproteção conferida pelo Litío e pelo CCI-779 independentemente sugere que o uso destes fármacos possa ser considerado uma boa estratégia como terapia para a DMJ, a testar em organismos evolutivamente mais próximos do humano. A manipulação da autofagia, segundo vários autores, parece ser benéfica e pode ser a chave para o desenvolvimento de novos tratamentos para várias doenças relacionadas com a agregação proteica e o envelhecimento.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nesta dissertação é apresentado um estudo dos sistemas de processamento automático de imagem em contexto de um problema relacionado com a individualização de neurónios em imagens da nematoda C. elegans durante estudos relacionados com a doença de Parkinson. Apresenta-se uma breve introdução à anatomia do verme, uma introdução à doença de Parkinson e uso do C. elegans em estudos relacionados e também é feita a análise de artigos em contexto de processamento de imagem para contextualizar a situação atual de soluções para o problema de extração de características e regiões espe­ficas. Neste projeto é desenvolvida uma pipeline com o auxilio do software CellProfiler para procurar uma resposta para o problema em questão.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Résumé Les mécanismes qui coordonnent la progression du cycle cellulaire lors de la méiose avec les événements du développement embryonnaire précoce, y compris la formation des axes de polarité embryonnaire, sont peu compris. Dans le zygote du vers Caenorhabditis elegans, les premiers signes de polarité Antéro-Postérieur (A-P) embryonnaire apparaissent après que la méiose soit terminée. La nature des protéines et des mécanismes moléculaires qui cassent la symétrie du zygote n'est pas connue. Nous démontrons que zyg-11 et cul-2 promeuvent la transition métaphase - anaphase et la sortie de la phase M lors de la seconde division méiotique. Nos résultats indiquent que ZYG-11 agit comme unité recrutant le substrat d'une ligase E3 comprennant CUL-2. Nos résultats montrent aussi que le délai de sortie de la phase M dépend de l'accumulation de la Cyclin B, CYB-3. Nous démontrons que dans des embryons zyg-11(RNAi) ou cul-2(RNAi), une polarité inversée est établie lors du délai de méiosis II. Enfin nous montrons que les défauts de cycle cellulaire et ceux de polarité peuvent être séparés. De plus, nous faisons apparaitre que l'établissement d'une polarité inversée pendant le délai de méiose II des embryons zyg-11(RNAi), comme l'établissement de la A-P polarité des embryons sauvage ne semblent pas requérir les microtubules. Nous montrons également les premiers résultats d'un crible deux hybrides ainsi qu'un crible génomique qui vise à identifier des gènes dont l'inactivation augmente ou supprime les défauts de mutants pour le gène zyg-11, afin d'identifier les gènes qui intéragissent avec ZYG-11 pour assumer ses deux fonctions séparables. Par conséquent, nos trouvailles suggèrent un modèle selon lequel ZYG-11 est une sous-unité qui recrute les substrats d'une ligase E3 basée sur CUL-2 qui promeut la progression du cycle cellulaire et empêche l'établissement de la polarité pendant la méiose II, et où le centrosome agit comme la clé qui polarise l'embryon à la fin de la méiose. Summary The mechanisms that couple meiotic cell cycle progression to subsequent developmental events, including specification of embryonic axes, are poorly understood. In the one cell stage embryos of Caenorhabditis elegans, the first signs of Antero-Posterior (A-P) polarity appear after meiosis completion. A centrosome ¬derived component breaks symmetry of the embryo, but the molecular nature of this polarity signal is not known. We established that zyg-11 and cul-2 promote the metaphase to anaphase transition and M phase exit at meiosis II. Our results indicate that ZYG-11 acts as a substrate recruitment subunit of a CUL-2-based E3 ligase. Moreover, we find that the delayed meiosis II exit of embryos lacking zyg-11 is caused by accumulation of the B-type cyclin, CYB-3. We demonstrate that inverted A-P polarity is established during the meiosis II delay in zyg-11(RNAi) and cul¬2(RNAi) embryos. Importantly, we demonstrate that the polarity defects following zyg-11 or cul-2 inactivation can be uncoupled from the cell cycle defects. Furthermore, we found that microtubules appear dispensable for inverted polarity during the meiosis II delay in zyg-11(RNAi) embryos, as well as for A-P polarity during the first mitotic cell cycle in wild-type embryos. We also show the initial results from a comprehensive yeast two hybrid, as well as an RNAi-based functional genomic enhancer and suppressor screen, that may lead to identification of proteins that interact with zyg-11 to ensure the two functions. Our findings suggest a model in which ZYG-11 is a substrate recruitment subunit of an CUL-2-based E3 ligase that promotes cell cycle progression and prevents polarity establishment during meiosis II, and in which the centrosome acts as a cue to polarize the embryo along the AP axis after exit from the meiotic cell cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Report for the scientific sojourn carried out at the Columbia University, United States, from 2010 to 2012. Expression of SoxB genes correlates with the commitment of cells to a neural fate; however, the relevance of SoxB proteins in early vertebrate neurogenesis has been difficult to prove genetically due to embryonic lethality and presumed redundant functions. The nematode C. Elegants has only 5 sox genes: sox-2 and sox-3 form the SoxB group while sem-2, sox-4 and egl-13 belong to other Sox groups. Our results show that sox-2 and sem-2 are the sox genes expressed earliest and in a broader manner during embryogenesis, being expressed in several neuronal progenitors. sox-3, sox-4 and egl-13 are expressed in few cells during late embryogenesis, when most neurons are already born. Both sox-2 and sem-2 null mutants are early larval lethal but do not show neuronal specification defects during embryonic development as indicated by quantification of a panneuronal reporter. Potential redundancy or compensatory mechanisms between different sox genes have been ruled out, strongly suggesting that sox genes are not required for specification of embryonically-derived neurons. However, at the first larval stage there are still several blast cells that will give rise to different postembryonic lineages, which generate several neurons amongst other cell types. nterestingly, sox-2 is expressed in many of these progenitor cells. Using mosaic analysis we have so far identified neurons derived from two different postembryonic lineages which fail to be generated in C. elegans sox-2 mutants. These results support the idea that postembryonic progenitor competence is compromised in the absence of sox-2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The human herpes simplex virus (HSV) host cell factor HCF-1 is a transcriptional coregulator that associates with both histone methyl- and acetyltransferases, and a histone deacetylase and regulates cell proliferation and division. In HSV-infected cells, HCF-1 associates with the viral protein VP16 to promote formation of a multiprotein-DNA transcriptional activator complex. The ability of HCF proteins to stabilize this VP16-induced complex has been conserved in diverse animal species including Drosophila melanogaster and Caenorhabditis elegans suggesting that VP16 targets a conserved cellular function of HCF-1. METHODOLOGY/PRINCIPAL FINDINGS: To investigate the role of HCF proteins in animal development, we have characterized the effects of loss of the HCF-1 homolog in C. elegans, called Ce HCF-1. Two large hcf-1 deletion mutants (pk924 and ok559) are viable but display reduced fertility. Loss of Ce HCF-1 protein at reduced temperatures (e.g., 12 degrees C), however, leads to a high incidence of embryonic lethality and early embryonic mitotic and cytokinetic defects reminiscent of mammalian cell-division defects upon loss of HCF-1 function. Even when viable, however, at normal temperature, mutant embryos display reduced levels of phospho-histone H3 serine 10 (H3S10P), a modification implicated in both transcriptional and mitotic regulation. Mammalian cells with defective HCF-1 also display defects in mitotic H3S10P status. CONCLUSIONS/SIGNIFICANCE: These results suggest that HCF-1 proteins possess conserved roles in the regulation of cell division and mitotic histone phosphorylation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mouse Grueneberg ganglion (GG) is an olfactory subsystem located at the tip of the nose close to the entry of the naris. It comprises neurons that are both sensitive to cold temperature and play an important role in the detection of alarm pheromones (APs). This chemical modality may be essential for species survival. Interestingly, GG neurons display an atypical mammalian olfactory morphology with neurons bearing deeply invaginated cilia mostly covered by ensheathing glial cells. We had previously noticed their morphological resemblance with the chemosensory amphid neurons found in the anterior region of the head of Caenorhabditis elegans (C. elegans). We demonstrate here further molecular and functional similarities. Thus, we found an orthologous expression of molecular signaling elements that was furthermore restricted to similar specific subcellular localizations. Calcium imaging also revealed a ligand selectivity for the methylated thiazole odorants that amphid neurons are known to detect. Cellular responses from GG neurons evoked by chemical or temperature stimuli were also partially cGMP-dependent. In addition, we found that, although behaviors depending on temperature sensing in the mouse, such as huddling and thermotaxis did not implicate the GG, the thermosensitivity modulated the chemosensitivity at the level of single GG neurons. Thus, the striking similarities with the chemosensory amphid neurons of C. elegans conferred to the mouse GG neurons unique multimodal sensory properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary Acquisition of lineage-specific cell cycle duration is an important feature of metazoan development. In Caenorhabditis a/egans, differences in cell cycle duration are already apparent in two-cell stage embryos, when the larger anterior blastomere AB divides before the smaller posterior blastomere P1. This time difference is under the control of anterior-posterior (A-P) polarity cues set by the PAR proteins. The mechanism by which these cues regulate the cell cycle machinery differentially in AB and P1 are incompletely understood. Previous work established that retardation of P1 cell division is due in part to preferential activation of an ATL1/CHK-1 dependent checkpoint in P1 but how the remaining time difference is controlled was not known at the onset of my work. The principal line of work in this thesis established that differential timing relies also on a mechanism that promotes mitosis onset preferentially in AB. The polo-like kinase PLK-1, a positive regulator of mitotic entry, is distributed in an asymmetric manner in two-cell stage embryos, with more protein present in AB than in P1. We find that PLK-1 asymmetry is regulated by anterior-posterior (A-P) polarity cues through preferential protein retention in the embryo anterior. Importantly, mild inactivation of plk-1 by RNAi delays entry into mitosis in P1 but not in AB, in a manner that is independent of ATL-1/CHK-1. Together, these findings favor a model in which differential timing of mitotic entry in C. elegans embryos relies on two complementary mechanisms: ATL-1/CHK-1 dependent preferential retardation in P1 and PLK-1 dependent preferential promotion in AB, which together couple polarity cues and cell cycle progression during early development. Besides analyzing PLK-1 asymmetry and its role in differential timing of two-cells stage embryos, we also characterized t2190, a mutant that exhibits reduced differential timing between AB and P1. We found this mutant to be a new allele of par-1. Additionally, we analyzed the role of NMY-2 in regulating the asynchrony of two-cell stage embryos, which may be uncoupled from its role in A-P polarity establishment and carried out a preliminary analysis of the mechanism underlying CDC-25 asymmetry between AB and P,. Overall, our works bring new insights into the mechanism controlling cell cycle progression in early C. elegans embryos. As most of the players important in C. elegans are conserved in other organisms, analogous mechanisms may be utilized in polarized cells of other species. Résumé Au cours du développement, les processus de division cellulaire sont régulés dans l'espace et le temps afin d'aboutir à la formation d'un organisme fonctionnel. Chez les Métazoaires, l'un des mécanismes de contrôle s'effectue au niveau de la durée du cycle cellulaire, celle-ci étant specifiée selon la lignée cellulaire. L'embryon du nématode Caenorhabditis elegans apparaît comme un excellent modèle d'étude de la régulation temporelle du cycle cellulaire. En effet, suite à la première division du zygote, l'embryon est alors composé de deux cellules de taille et d'identité différentes, appelées blastomères AB et P1. Ces deux cellules vont ensuite se diviser de manière asynchrone, le grand blastomère antérieur AB se divisant plus rapidement que le petit blastomère postérieur P1. Cette asynchronie de division est sous le contrôle des protéines PAR qui sont impliquées dans l'établissement de l'axe antéro-postérieur de l'embryon. A ce jour, les mécanismes moléculaires gouvernant ce processus d'asynchronie ne sont que partiellement compris. Des études menées pré©demment ont établit que le retard de division observé dans le petit blastomère postérieur P1 était dû, en partie, à l'activation préférentielle dans cette cellule de ATL-1/CHK-1, protéines contrôlant la réponse à des erreurs dans le processus de réplication de l'ADN. L'analyse des autres mécanismes responsables de la différence temporelle d'entrée en mitose des deux cellules a été entreprise au cours de cette thèse. Nous avons considéré la possibilité que l'asynchronie de division était du à l'entrée préférentielle en mitose du grand blastomère AB. Nous avons établi que la protéine kinase PLK-1 (polo-like kinase 1), impliquée dans la régulation positive de la mitose, était distribuée de manière asymétrique dans l'embryon deux cellules. PLK-1 est en effet enrichi dans le blastomère AB. Cette localisation asymétrique de PLK-1 est sous le contrôle des protéines PAR et semble établie via une rétention de PLK-1 dans la cellule AB. Par ailleurs, nous avons démontré que l'inactivation partielle de plk-7 par interférence à ARN (RNAi) conduit à un délai de l'entrée en mitose de la cellule P1 spécifiquement, indépendamment des protéines régulatrices ATL-1/CHK-1. En conclusion, nous proposons un modèle de régulation temporelle de l'entrée en mitose dans l'embryon deux cellules de C. elegans basé sur deux mécanismes complémentaires. Le premier implique l'activation préférentielle des protéines ATL-1/CHK-1, et conduit à un retard d'entrée en mitose spécifiquement dans la cellule P1. Le second est basé sur la localisation asymétrique de la protéine kinase PLK-1 dans la cellule AB et induit une entrée précoce en mitose de cette cellule. Par ailleurs, nous avons étudié un mutant appelé t2190 qui réduit la différence temporelle d'entrée en mitose entre les cellules AB et P1. Nous avons démontré que ce mutant correspondait à un nouvel allèle du Bene par-1. De plus, nous avons analysé le rôle de NMY-2, une protéine myosine qui agit comme moteur moléculaire sur les filaments d'active; dans la régulation de l'asynchronie de division des blastomères AB et P1, indépendamment de sa fonction dans l'établissement de l'axe antéro-postérieur. Par ailleurs, nous avons commen© l'étude du mécanisme moléculaire régulant la localisation asymétrique entre les cellules AB et P1 de la protéine phosphatase CDC25, qui est également un important régulateur de l'entrée en mitose. En conclusion, ce travail de thèse a permis une meilleure compréhension des mécanismes gouvernant la progression du cycle cellulaire dans l'embryon précoce de C. elegans. Etant donné que la plupart des protéines impliquées dans ces processus sont conservées chez d'autres organismes multicellulaires, il apparaît probable que les mécanismes moléculaires révélés dans cette étude soit aussi utilisés chez ceux-ci.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La divison cellulaire asymétrique est un processus essentiel qui permet aux cellules souches de s’auto-renouveller et de produire une cellule fille destinée à la différenciation. La lignée germinale de C. elegans, totipotente et immortelle, est une lignée de cellules souches qui contient des organites ribonucléoprotéiques appelés granules P. Au cours du développement ces derniers sont toujours localisés spécifiquement dans les cellules précurseurs de la lignée germinals, suggérant qu’ils sont des déterminants de la lignée germinale. De façon intéressante, des granules ribonucléoprotéiques, comme les P bodies impliqués dans le contrôle post-transcriptionnel, ont été observés chez tous les organismes. Néanmoins, la fonction précise des granules P de C. elegans est inconnue. Récemment, notre laboratoire a montré que NHL-2, un homologue de Mei-P26 de Drosophile, colocalise avec les granules P dans des embryons précoces et joue un rôle dans la division cellulaire asymétrique et dans la polarité cellulaire. Tous les granules P contiennent NHL- 2, ce qui nous a mené à poser l’hypothèse que NHL-2 régule la biogenèse et la fonction des granules P. Nous avons testé cette hypothèse par imagerie et quantification de l'intensité de PGL-1, un composant essentiel des granules P, dans des embryons fixés. Nos résultats montrent que dans des embryons mutants pour nhl-2 il y a une réduction du nombre de granules P, de l'intensité de fluorescence moyenne (IFM) et de l'intensité de fluorescence total (IFT) de PGL-1. Une analyse plus poussée a montré qu'il existe deux populations distinctes d’embryons mutants pour nhl-2 : l’une présente une intensité de PGL-1 comparable à celle d’une population sauvage alors que le second groupe présente une forte réduction des quantités de PGL-1 et est comparable à des mutants pour pgl-1. Cette variabilité est aussi observée dans le phénotype de stérilité de nhl-2 mutant à des températures élevées. Globalement, nos résultats suggèrent que la perte de fonction de NHL-2 perturbe la prolifération des cellules germinales ainsi que la formation et/ou la stabilité des granules P au cours des étapes précoces du développement des précurseurs de la lignée germinals. D’autre part, ils suggèrent que la fonction de NHL-2 pourrait être partiellement redondants avec les autres régulateurs de la stabilité des granules P. Mots-clés : Granules P, NHL-2, Cellules germinals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’ubiquitin-fold modifier (UFM1) fait partie de la classe 1 de la famille de protéine ubiquitin-like (Ubl). UFM1 et Ub ont très peu d’homologie de séquence, mais partagent des similarités remarquables au niveau de leur structure tertiaire. Tout comme l’Ub et la majorité des autres Ubls, UFM1 se lie de façon covalente à ses substrats par l’intermédiaire d’une cascade enzymatique. Il est de plus en plus fréquemment rapporté que les protéines Ubls sont impliquées dans des maladies humaines. Le gène Ufm1 est surexprimé chez des souris de type MCP développant une ischémie myocardique et dans les îlots de Langerhans de patients atteints du diabète de type 2. UFM1 et ses enzymes spécifiques, UBA5, UFL1 et UFC1, sont conservés chez les métazoaires et les plantes suggérant un rôle important pour les organismes multicellulaires. Le Caenorhabditis elegans est le modèle animal le plus simple utilisé en biologie. Sa morphologie, ses phénotypes visibles et ses lignées cellulaires ont été décrits de façon détaillée. De plus, son cycle de vie court permet de rapidement observer les effets de certains gènes sur la longévité. Ce modèle nous permet de facilement manipuler l’expression du gène Ufm1 et de mieux connaître ses fonctions. En diminuant l’expression du gène ufm-1 chez le C.elegans, par la technique de l’ARN interférence par alimentation, nous n’avons observé aucun problème morphologique grave. Les vers ressemblaient aux vers sauvages et possédaient un nombre de progéniture normal. Cependant, les vers sauvage exposés à l’ARNi d’ufm-1 vivent significativement moins longtemps que les contrôles et ce, de façon indépendante de la voie de signalisation de l’insuline/IGF. Chez le C. elegans la longévité et la résistance au stress cellulaire sont intimement liées. Nous n’avons remarqué aucun effet d’ufm-1 sur le stress thermal, osmotique ou oxydatif, mais il est requis pour la protection contre le stress protéotoxique. Il est également nécessaire au maintien de l’intégrité neuronale au cours du vieillissement des animaux. L’ensemble de nos données nous renseigne sur les fonctions putatives du gène Ufm1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les gènes TDP-43 (TAR DNA Binding Protein 43) et FUS/TLS (Fused in Sarcoma/Translocated in Liposarcoma) sont actuellement à l’étude quant à leurs rôles biologiques dans le développement de diverses neuropathies telles que la Sclérose Latérale Amyotrophique (SLA). Étant donné que TDP-43 et FUS sont conservés au cours de l’évolution, nous avons utilisé l’organisme modèle C. elegans afin d’étudier leurs fonctions biologiques. Dans ce mémoire, nous démontrons que TDP-1 fonctionne dans la voie de signalisation Insuline/IGF pour réguler la longévité et la réponse au stress oxydatif. Nous avons développé des lignées C. elegans transgéniques mutantes TDP-43 et FUS qui présentent certains aspects de la SLA tels que la dégénérescence des motoneurones et la paralysie adulte. La protéotoxicité causée par ces mutations de TDP- 43 et FUS associées à la SLA, induit l’expression de TDP-1. À l’inverse, la délétion de tdp-1 endogène protège contre la protéotoxicité des mutants TDP-43 et FUS chez C. elegans. Ces résultats suggèrent qu’une induction chronique de TDP-1/TDP-43 sauvage propagerait la protéotoxicité liée à la protéine mutante. Nous avons aussi entrepris un criblage moléculaire pilote afin d’isoler des suppresseurs de toxicité neuronale des modèles transgéniques mutants TDP-43 et FUS. Nous avons ainsi identifié le bleu de méthylène et le salubrinal comme suppresseurs potentiels de toxicité liée à TDP-43 et FUS via réduction de la réponse au stress du réticulum endoplasmique (RE). Nos résultats indiquent que l’homéostasie de repliement des protéines dans le RE représente une cible pour le développement de thérapies pour les maladies neurodégénératives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La division cellulaire est un processus fondamental des êtres vivants. À chaque division cellulaire, le matériel génétique d'une cellule mère est dupliqué et ségrégé pour produire deux cellules filles identiques; un processus nommé la mitose. Tout d'abord, la cellule doit condenser le matériel génétique pour être en mesure de séparer mécaniquement et également le matériel génétique. Une erreur dans le niveau de compaction ou dans la dynamique de la mitose occasionne une transmission inégale du matériel génétique. Il est suggéré dans la littérature que ces phénomènes pourraient causé la transformation des cellules can©reuses. Par contre, le mécanisme moléculaire générant la coordination des changements de haut niveau de la condensation des chromosomes est encore incompris. Dans les dernières décennies, plusieurs approches expérimentales ont identifié quelques protéines conservées dans ce processus. Pour déterminer le rôle de ces facteurs dans la compaction des chromosomes, j'ai effectué un criblage par ARNi couplé à de l'imagerie à haute-résolution en temps réel chez l'embryon de C. elegans. Grâce à cette technique, j'ai découvert sept nouvelles protéines requises pour l'assemblage des chromosomes mitotiques, incluant la Ribonucléotide réductase (RNR) et Topoisomérase II (topo-II). Dans cette thèse, je décrirai le rôle structural de topo-II dans l'assemblage des chromosomes mitotiques et ces mécanismes moléculaires. Lors de la condensation des chromosomes, topo-II agit indépendamment comme un facteur d'assemblage local menant par la suite à la formation d'un axe de condensation tout au long du chromosome. Cette localisation est à l'opposé de la position des autres facteurs connus qui sont impliqués dans la condensation des chromosomes. Ceci représente un nouveau mécanisme pour l'assemblage des chromosomes chez C. elegans. De plus, j'ai découvert un rôle non-enzymatique à la protéine RNR lors de l'assemblage des chromosomes. Lors de ce processus, RNR est impliqué dans la stabilité des nucléosomes et alors, permet la compaction de haut niveau de la chromatine. Dans cette thèse, je rapporte également des résultats préliminaires concernant d'autres nouveaux facteurs découverts lors du criblage ARNi. Le plus important est que mon analyse révèle que la déplétion des nouvelles protéines montre des phénotypes distincts, indiquant la fonction de celles-ci lors de l'assemblage des chromosomes. Somme toute, je conclus que les chromosomes en métaphase sont assemblés par trois protéines ayant des activités différentes d'échafaudage: topoisomérase II, les complexes condensines et les protéines centromériques. En conclusion, ces études prouvent le mécanisme moléculaire de certaines protéines qui contribuent à la formation des chromosomes mitotiques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’incidence constante des maladies liées à l’âge reflète un réel enjeu dans nos sociétés actuelles, principalement lorsqu’il est question des cas de cancers, d’accidents ©rébraux et de maladies neurodégénératives. Ces désordres sont liés à l’augmentation de l’espérance de vie et à un vieillissement de la population. Les coûts, estimés en milliards de dollars, représentent des sommes de plus en plus importantes. Bien que les efforts déployés soient importants, aucun traitement n’a encore été trouvé. Les maladies neurodégénératives, telles que la maladie d’Alzheimer, de Parkinson, d’Huntington ou la sclérose latérale amyotrophique (SLA), caractérisées par la dégénérescence d’un type neuronal spécifique à chaque pathologie, représentent un défi important. Les mécanismes de déclenchement de la pathologie sont encore nébuleux, de plus il est maintenant clair que certains de ces désordres impliquent de nombreux gènes impliqués dans diverses voies de signalisation induisant le dysfonctionnement de processus biologiques importants, tel que le métabolisme. Dans nos sociétés occidentales, une problématique, directement lié à notre style de vie s’ajoute. L’augmentation des quantités de sucre et de gras dans nos diètes a amené à un accroissement des cas de diabètes de type II, d’obésité et de maladies coronariennes. Néanmoins, le métabolisme du glucose, principale source énergétique du cerveau, est primordial à la survie de n’importe quel organisme. Lors de ces travaux, deux études effectuées à l’aide de l’organisme Caenorhabditis elegans ont porté sur un rôle protecteur du glucose dans un contexte de vieillissement pathologique et dans des conditions de stress cellulaire. Le vieillissement semble accéléré dans un environnement enrichi en glucose. Cependant, les sujets traités ont démontré une résistance importante à différents stress et aussi à la présence de protéines toxiques impliquées dans la SLA et la maladie de Huntington. Dans un deuxième temps, nous avons démontré que ces effets peuvent aussi être transmis à la génération suivante. Un environnement enrichi en glucose a pour bénéfice de permettre une meilleure résistance de la progéniture, sans pour autant transmettre les effets néfastes dû au vieillissement accéléré.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La division asymétrique est essentielle pour générer la diversité au cours du développement et permet aussi de réguler la balance entre renouvellement et différenciation des cellules souches chez l’adulte. Dans ces deux cas de figure, elle dépend respectivement d’une polarité intrinsèque ou d’une polarité extrinsèque. C. elegans est un excellent modèle pour étudier les mécanismes cellulaires et moléculaires de la division asymétrique in vivo. Chez l’embryon, le maintien d’un axe de polarité antéro-postérieur dépend des protéines PAR conservées et localisées de façon asymétrique en deux groupes mutuellement exclusifs; le groupe antérieur avec PAR-3, PAR-6, PKC-3 et le groupe postérieur avec PAR-2 et PAR-1. L’absence d’une protéine PAR entraine une perte de polarité et une létalité embryonnaire. Lors d’un crible par ARN interférence mené par Jean-Claude Labbé pour identifier les suppresseurs de la létalité associée à la perte de PAR-2, deux cyclines de type B, CYB-2.1 et CYB-2.2 ont été trouvées. J’ai déterminé que CYB-2.1 et CYB-2.2 interviennent dans la polarité sans perturber le cycle cellulaire et agissent vraisemblablement avec leur kinase associée, CDK-1, pour stabiliser les niveaux protéiques de PAR-6. Ces travaux permettent de mieux définir les liens étroits entre polarité et cycle cellulaire. La lignée germinale de C. elegans est un excellent modèle pour étudier les divisions des cellules souches germinales in vivo. Par contre, l’absence d’orientation préférentielle de ces divisions laisse envisager que la complexité morphologique de la niche pourrait engendrer une diversité d’axe possible. J’ai étudié la régulation morphologique de cette niche, une unique cellule somatique appelée distal tip cell (DTC), qui arborise de longues extensions au stade adulte. Mes résultats préliminaires favorisent un modèle dans lequel les cellules souches et progéniteurs germinaux (CSPG) supportent la formation de ces extensions. Enfin, j’ai obtenu des conditions favorables à l’étude de la division asymétrique extrinsèque dans ce modèle, en simplifiant l’architecture de la niche dans des conditions qui préservent les divisions cellulaires des cellules souches. Mes travaux ont permis de mieux comprendre les liens unissant les différents processus biologiques impliqués dans la division asymétrique, d’une part par l’étude du rôle qu’y jouent des régulateurs clés du cycle cellulaire au cours du développement et d’autre part par la caractérisation d’une communication bidirectionnelle entre la niche et les cellules souches chez l’adulte.