999 resultados para Bucky-paper


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we focus on processing and characterizing composite material structures made of carbon nanotubes (CNTs) and reproducibly engineering macro-pores inside their structure. Highly porous bucky-papers were fabricated from pure carbon nanotubes by dispersing and stabilizing large 1 μm polystyrene beads within a carbon nanotube suspension. The polystyrene beads, homogeneously dispersed across the thickness of the bucky-papers, were then either dissolved or carbonized to generate macro cavities of different shape and properties. The impact of adding these macro cavities on the porosity, specific surface area and Young’s modulus was investigated and some benefits of the macro cavities will be demonstrated.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Focused ion beam (FIB) milling through carbon nanotube (CNT) yarns and bucky-papers followed by scanning electron microscopy has recently emerged as a powerful tool for eliciting details of their internal structure. The internal arrangement of CNTs in bucky-papers and yarns directly affects their performance and characteristics. Consequently this information is critical for further optimisation of these structures and to tailor their properties for specific applications. This chapter describes in detail FIB milling of CNT yarns and bucky-papers and gives a range of examples where FIB milling has enabled a better understanding of how processing conditions and treatments affect the internal structure. Emphasis is placed on how FIB milling elucidates the influence of fabrication conditions on the internal arrangement of CNTs and how this influences the material's macroscopic properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We develop lightweight, multilayer materials composed of alternating layers of poly dimethyl siloxane (PDMS) polymer and vertically aligned carbon nanotube (CNT) arrays, and characterize their mechanical response in compression. The CNT arrays used In the assembly are synthesized with graded mechanical properties along their thickness, and their use enables the creation of multilayer structures with low density (0.12-0.28 g/cm(3)). We test the mechanical response of structures composed of different numbers of CNT layers partially embedded in PDMS polymer, under quasi-static and dynamic loading. The resulting materials exhibit a hierarchical, fibrous structure with unique mechanical properties: They can sustain large compressive deformations (up to similar to 0.8 strain) with a nearly complete recovery and present strain localization in selected sections of the materials. Energy absorption, as determined by the hysteresis observed In stress-strain curves, is found to be at least 3 orders of magnitude larger than that of natural and synthetic cellular materials of comparable density. Conductive bucky paper Is Included within the polymer interlayers. This allows the measurement of resistance variation as a function of applied stress, showing strong correlation with the observed strain localization In compression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vertical arrays of carbon nanotubes (VACNTs) show unique mechanical behavior in compression, with a highly nonlinear response similar to that of open cell foams and the ability to recover large deformations. Here, we study the viscoelastic response of both freestanding VACNT arrays and sandwich structures composed of a VACNT array partially embedded between two layers of poly(dimethylsiloxane) (PDMS) and bucky paper. The VACNTs tested are similar to 2 mm thick foams grown via an injection chemical vapor deposition method. Both freestanding and sandwich structures exhibit a time-dependent behavior under compression. A power-law function of time is used to describe the main features observed in creep and stress-relaxation tests. The power-law exponents show nonlinear viscoelastic behavior in which the rate of creep is dependent upon the stress level and the rate of stress relaxation is dependent upon the strain level. The results show a marginal effect of the thin PDMS/bucky paper layers on the viscoelastic responses. At high strain levels (epsilon - 0.8), the peak stress for the anchored CNTs reaches similar to 45 MPa, whereas it is only similar to 15MPa for freestanding CNTs, suggesting a large effect of PDMS on the structural response of the sandwich structures. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.3699184]

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) are nanoscale cylinders of graphene with exceptional properties such as high mechanical strength, high aspect ratio and large specific surface area. To exploit these properties for membranes, macroscopic structures need to be designed with controlled porosity and pore size. This manuscript reviews recent progress on two such structures: (i) CNT Bucky-papers, a non-woven, paper like structure of randomly entangled CNTs, and (ii) isoporous CNT membranes, where the hollow CNT interior acts as a membrane pore. The construction of these two types of membranes will be discussed, characterization and permeance results compared, and some promising applications presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Membranes are crucial in modern industry and both new technologies and materials need to be designed to achieve higher selectivity and performance. Exotic materials such as nanoparticles offer promising perspectives, and combining both their very high specific surface area and the possibility to incorporate them into macrostructures have already shown to substantially increase the membrane performance. In this paper we report on the fabrication and engineering of metal-reinforced carbon nanotube (CNT) Bucky-Paper (BP) composites with tuneable porosity and surface pore size. A BP is an entangled mesh non-woven like structure of nanotubes. Pure CNT BPs present both very high porosity (>90%) and specific surface area (>400 m2/g). Furthermore, their pore size is generally between 20–50 nm making them promising candidates for various membrane and separation applications. Both electro-plating and electroless plating techniques were used to plate different series of BPs and offered various degrees of success. Here we will report mainly on electroless plated gold/CNT composites. The benefit of this method resides in the versatility of the plating and the opportunity to tune both average pore size and porosity of the structure with a high degree of reproducibility. The CNT BPs were first oxidized by short UV/O3 treatment, followed by successive immersion in different plating solutions. The morphology and properties of these samples has been investigated and their performance in air permeation and gas adsorption will be reported.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

New technologies are required to improve desalination efficiency and increase water treatment capacities. One promising low energy technique to produce potable water from either sea or sewage water is membrane distillation (MD). However, to be competitive with other desalination processes, membranes need to be designed specifically for the MD process requirements. Here we report on the design of carbon nanotube (CNT) based composite material membranes for direct contact membrane distillation (DCMD). The membranes were characterized and tested in a DCMD setup under different feed temperatures and test conditions. The composite CNT structures showed significantly improved performance compared to their pure self-supporting CNT counterparts. The best composite CNT membranes gave permeabilities as high as 3.3 x 10-12 kg/(m x s x Pa) with an average salt rejection of 95% and lifespan of up to 39 h of continuous testing, making them highly promising candidates for DCMD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The literature regarding the historical and international development of inclusive education is extensive. Analysis of the literature has provided some reoccurring themes that are used to frame this discussion paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses the ways in which synergies across design disciplines can be developed through student engagement on authentic design projects. The paper focuses on a comparative case study where students from the Fashion, and Communication Design discipline areas in the Creative Industries Faculty at Queensland University of Technology (QUT) work on the production of the Frock Paper Scissors magazine and web site. The Frock Paper Scissors magazine has been the focus of assessment in a Fashion and Style Journalism class for the last three years, and for the last two years, students from an Advanced Web Design class have been involved in the production of the accompanying web site, http://frockpapersissors.com/. In this paper we focus on how this authentic assessment task has been integrated into the two design (and communication) classes; discussing the different approaches taken by teaching staff, the challenges faced, and the ways in which student learning outcomes have been improved through interactions between design disciplines. The paper concludes by outlining a set of observations on how to successfully engage students from different design (and creative industries) fields on an authentic design project within their studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The benefits and growing need for international transparency in engineering qualifications, simple cross-credit processes, international dual awards and mechanisms to encourage student mobility, are receiving much attention around the world at present. In response, there are a number of global initiatives now looking at how these issues may be addressed, particularly in Europe, North America and Australia. CDIO has adopted 12 Standards as guiding principles for program reform and evaluation. The 12 CDIO Standards address program philosophy curriculum development, design-build experiences and workspaces, new methods of teaching and learning, faculty/academic development, and assessment and evaluation. However, none of the Standards address international qualifications nor student mobility. This discussion paper presents the underpinning case for introducing the 13th CDIO Standard, Internationalization and Mobility.