964 resultados para Buccal nerve


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The knowledge of the buccal nerve anatomy is of fundamental importance not only for the anesthesia but also for a safe intervention in the retromolar area. The aim of this work was to study its trajectory, in the area where it is related to the anterior margin of the ramus of the mandible, therefore providing important data for a safe intervention in the region. In this study we used 10 hemi-heads from male and female adults, from different ethnic groups. They were fixed in formol, and belong to the Anatomy Laboratory at the Faculty of Dentistry in Araraquara UNESP. These hemi-heads were dissected by lateral access, preserving the buccal nerve in its trajectory related to the anterior margin of the ramus of the mandible until its penetration in the buccinator muscle. Next, we desinserted the masseter muscle so that all the ramus of the mandible were exposed. Then, the following measurements were carried out: from the base of the mandible until the buccal nerve and from the base of the mandible until the apices of the mandibular coronoid process. These measurements were accomplished with a Mitutoyo CD-6'' CS digital paquimeter. The following average values were obtained: 32.26 mm (to the left side) and 32.04 mm (to the right side), from the base of the mandible until the buccal nerve and 59.09 mm (to the left side) and 58.95 mm (to the right side) from the base of the mandible until the apices of the coronoid process. We have concluded that normally, the buccal nerve crosses the anterior margin of the ramus of the mandible in an area which is above the superior half of the ramus of the mandible and also that the interventions in the retromolar region do not offer great risks of injury in the buccal nerve.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Inferior Alveolar Nerve (IAN) transposition is an option for prosthetic rehabilitation in cases of moderate or even severe bone reabsorption for patients that do not tolerate removable dentures. The aim of the present report is to describe an inferior alveolar nerve transposition with involvement of the mental foramen for implant placement. The surgical procedure was performed under local anesthesia, by the inferior alveolar, lingual and buccal nerve blocking technique. Centripetal osteotomy was performed, and bone tissue was removed, leaving the nerve tissue free in the foramen area. After that, transsection of the incisor nerve was performed, and lateral osteotomy was started from the buccal direction, toward the trajectory of the IAN. The procedure was concluded, by making use of a delicate resin spatula to manipulate the vascular-nervous bundle. The drilling sequence for placing the dental implants was performed, and autogenous bone was harvested using a bone collector attached to the surgical suction appliance. After the implants were placed, the bone tissue previously collected during the osteotomies and drilling processes was placed in order to protect the IAN from contact with the implants. The surgical protocol for inferior alveolar nerve transposition, followed by implant placement presented excellent results, with complete recovery of the sensitivity, seven months after the surgical procedure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A 19-year old female patient was referred for removal of her wisdom teeth. The panoramic radiograph showed bilateral retromolar canals in the mandible. Since the retromolar canal is neglected in anatomical textbooks and is rarely documented in scientific publications, the case prompted us to perform further diagnostic examinations with informed consent by the patient. A limited cone beam computed tomography was made and, during the surgical removal of the patient's lower right wisdom tooth, a biopsy of the soft tissue bundle emerging from the retromolar foramen was taken. In accordance with the literature, the histology revealed myelinated nerve fibers, small arteries and venules. The limited data available in the literature about the retromolar canal report that this bony canal may convey an aberrant buccal nerve. In addition, sensory nerve fibers entering the retromolar canal from above and branching to the mandibular molars may evade a block anesthesia at the mandibular foramen. These rare anatomic features may explain why the elements of the retromolar canal account for failures of mandibular block anesthesia or postsurgical sensitivity changes in the supply area of the buccal nerve.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The retromolar canal is an anatomic structure of the mandible with clinical importance. This canal branches off from the mandibular canal behind the third molar and travels to the retromolar foramen in the retromolar fossa. The retromolar canal might conduct accessory innervation to the mandibular molars or contain an aberrant buccal nerve.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Individuals with facial paralysis of 6 months or more without evidence of clinical or electromyographic improvement have been successfully reanimated utilizing an orthodromic temporalis transfer in conjunction with end-to-side cross-face nerve grafts. The temporalis muscle insertion is released from the coronoid process of the mandible and sutured to a fascia lata graft that is secured distally to the commissure and paralyzed hemilip. The orthodromic transfer of the temporalis muscle overcomes the concave temporal deformity and zygomatic fullness produced by the turning down of the central third of the muscle (Gillies procedure) while yielding stronger muscle contraction and a more symmetric smile. The muscle flap is combined with cross-face sural nerve grafts utilizing end-to-side neurorrhaphies to import myelinated motor fibers to the paralyzed muscles of facial expression in the midface and perioral region. Cross-face nerve grafting provides the potential for true spontaneous facial motion. We feel that the synergy created by the combination of techniques can perhaps produce a more symmetrical and synchronized smile than either procedure in isolation.Nineteen patients underwent an orthodromic temporalis muscle flap in conjunction with cross-face (buccal-buccal with end-to-side neurorrhaphy) nerve grafts. To evaluate the symmetry of the smile, we measured the length of the two hemilips (normal and affected) using the CorelDRAW X3 software. Measurements were obtained in the pre- and postoperative period and compared for symmetry.There was significant improvement in smile symmetry in 89.5 % of patients.Orthodromic temporalis muscle transfer in conjunction with cross face nerve grafts creates a synergistic effect frequently producing an aesthetic, symmetric smile.This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors at www.spinger.com/00266.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To determine the subbasal nerve density and tortuosity at 5 corneal locations and to investigate whether these microstructural observations correlate with corneal sensitivity. Method: Sixty eyes of 60 normal human subjects were recruited into 1 of 3 age groups, group 1: aged ,35 years, group 2: aged 35–50 years, and group 3: aged .50 years. All eyes were examined using slit-lamp biomicroscopy, noncontact corneal esthesiometry, and slit scanning in vivo confocal microscopy. Results: The mean subbasal nerve density and the mean corneal sensitivity were greatest centrally (14,731 6 6056 mm/mm2 and 0.38 6 0.21 millibars, respectively) and lowest in the nasal mid periphery (7850 6 4947 mm/mm2 and 0.49 6 0.25 millibars, respectively). The mean subbasal nerve tortuosity coefficient was greatest in the temporal mid periphery (27.3 6 6.4) and lowest in the superior mid periphery (19.3 6 14.1). There was no significant difference in mean total subbasal nerve density between age groups. However, corneal sensation (P = 0.001) and subbasal nerve tortuosity (P = 0.004) demonstrated significant differences between age groups. Subbasal nerve density only showed significant correlations with corneal sensitivity threshold in the temporal cornea and with subbasal nerve tortuosity in the inferior and nasal cornea. However, these correlations were weak. Conclusions: This study quantitatively analyzes living human corneal nerve structure and an aspect of nerve function. There is no strong correlation between subbasal nerve density and corneal sensation. This study provides useful baseline data for the normal living human cornea at central and mid-peripheral locations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patients with idiopathic small fibre neuropathy (ISFN) have been shown to have significant intraepidermal nerve fibre loss and an increased prevalence of impaired glucose tolerance (IGT). It has been suggested that the dysglycemia of IGT and additional metabolic risk factors may contribute to small nerve fibre damage in these patients. Twenty-five patients with ISFN and 12 aged-matched control subjects underwent a detailed evaluation of neuropathic symptoms, neurological deficits (Neuropathy deficit score (NDS); Nerve Conduction Studies (NCS); Quantitative Sensory Testing (QST) and Corneal Confocal Microscopy (CCM)) to quantify small nerve fibre pathology. Eight (32%) patients had IGT. Whilst all patients with ISFN had significant neuropathic symptoms, NDS, NCS and QST except for warm thresholds were normal. Corneal sensitivity was reduced and CCM demonstrated a significant reduction in corneal nerve fibre density (NFD) (Pb0.0001), nerve branch density (NBD) (Pb0.0001), nerve fibre length (NFL) (Pb0.0001) and an increase in nerve fibre tortuosity (NFT) (Pb0.0001). However these parameters did not differ between ISFN patients with and without IGT, nor did they correlate with BMI, lipids and blood pressure. Corneal confocal microscopy provides a sensitive non-invasive means to detect small nerve fibre damage in patients with ISFN and metabolic abnormalities do not relate to nerve damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To analyze the repeatability of measuring nerve fiber length (NFL) from images of the human corneal subbasal nerve plexus using semiautomated software. Methods: Images were captured from the corneas of 50 subjects with type 2 diabetes mellitus who showed varying severity of neuropathy, using the Heidelberg Retina Tomograph 3 with Rostock Corneal Module. Semiautomated nerve analysis software was independently used by two observers to determine NFL from images of the subbasal nerve plexus. This procedure was undertaken on two occasions, 3 days apart. Results: The intraclass correlation coefficient values were 0.95 (95% confidence intervals: 0.92–0.97) for individual subjects and 0.95 (95% confidence intervals: 0.74–1.00) for observer. Bland-Altman plots of the NFL values indicated a reduced spread of data with lower NFL values. The overall spread of data was less for (a) the observer who was more experienced at analyzing nerve fiber images and (b) the second measurement occasion. Conclusions: Semiautomated measurement of NFL in the subbasal nerve fiber layer is highly repeatable. Repeatability can be enhanced by using more experienced observers. It may be possible to markedly improve repeatability when measuring this anatomic structure using fully automated image analysis software.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim/hypothesis Immune mechanisms have been proposed to play a role in the development of diabetic neuropathy. We employed in vivo corneal confocal microscopy (CCM) to quantify the presence and density of Langerhans cells (LCs) in relation to the extent of corneal nerve damage in Bowman's layer of the cornea in diabetic patients. Methods 128 diabetic patients aged 58±1 yrs with a differing severity of neuropathy based on Neuropathy Deficit Score (NDS—4.7±0.28) and 26 control subjects aged 53±3 yrs were examined. Subjects underwent a full neurological evaluation, evaluation of corneal sensation with non-contact corneal aesthesiometry (NCCA) and corneal nerve morphology using corneal confocal microscopy (CCM). Results The proportion of individuals with LCs was significantly increased in diabetic patients (73.8%) compared to control subjects (46.1%), P=0.001. Furthermore, LC density (no/mm2) was significantly increased in diabetic patients (17.73±1.45) compared to control subjects (6.94±1.58), P=0.001 and there was a significant correlation with age (r=0.162, P=0.047) and severity of neuropathy (r=−0.202, P=0.02). There was a progressive decrease in corneal sensation with increasing severity of neuropathy assessed using NDS in the diabetic patients (r=0.414, P=0.000). Corneal nerve fibre density (P<0.001), branch density (P<0.001) and length (P<0.001) were significantly decreased whilst tortuosity (P<0.01) was increased in diabetic patients with increasing severity of diabetic neuropathy. Conclusion Utilising in vivo corneal confocal microscopy we have demonstrated increased LCs in diabetic patients particularly in the earlier phases of corneal nerve damage suggestive of an immune mediated contribution to corneal nerve damage in diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diabetic neuropathy is a significant clinical problem that currently has no effective therapy, and in advanced cases, leads to foot ulceration and lower limb amputation. The accurate detection, characterisation and quantification of this condition are important in order to define at-risk patients, anticipate deterioration, monitor progression and assess new therapies. This thesis evaluates novel corneal methods of assessing diabetic neuropathy. Over the past several years two new non-invasive corneal markers have emerged, and in cross-sectional studies have demonstrated their ability to stratify the severity of this disease. Corneal confocal microscopy (CCM) allows quantification of corneal nerve parameters and non-contact corneal aesthesiometry (NCCA), the presumed functional correlate of corneal structure, assesses the sensitivity of the cornea. Both these techniques are quick to perform, produce little or no discomfort for the patient, and with automatic analysis paradigms developed, are suitable for clinical settings. Each has advantages and disadvantages over established techniques for assessing diabetic neuropathy. New information is presented regarding measurement bias of CCM images, and a unique sampling paradigm and associated accuracy determination method of combinations is described. A novel high-speed corneal nerve mapping procedure has been developed and application of this procedure in individuals with neuropathy has revealed regions of sub-basal nerve plexus that dictate further evaluation, as they appear to show earlier signs of damage than the central region of the cornea that has to date been examined. The discriminative capacity of corneal sensitivity measured by NCCA is revealed to have reasonable potential as a marker of diabetic neuropathy. Application of these new corneal markers for longitudinal evaluation of diabetic neuropathy has the potential to reduce dependence on more invasive, costly, and time-consuming assessments, such as skin biopsy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To develop a rapid optimized technique of wide-field imaging of the human corneal subbasal nerve plexus. A dynamic fixation target was developed and, coupled with semiautomated tiling software, a rapid method of capturing and montaging multiple corneal confocal microscopy images was created. To illustrate the utility of this technique, wide-field maps of the subbasal nerve plexus were produced in 2 participants with diabetes, 1 with and 1 without neuropathy. The technique produced montages of the central 3 mm of the subbasal corneal nerve plexus. The maps seem to show a general reduction in the number of nerve fibers and branches in the diabetic participant with neuropathy compared with the individual without neuropathy. This novel technique will allow more routine and widespread use of subbasal nerve plexus mapping in clinical and research situations. The significant reduction in the time to image the corneal subbasal nerve plexus should expedite studies of larger groups of diabetic patients and those with other conditions affecting nerve fibers. The inferior whorl and the surrounding areas may show the greatest loss of nerve fibers in individuals with diabetic neuropathy, but this should be further investigated in a larger cohort.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose Arbitrary numbers of corneal confocal microscopy images have been used for analysis of corneal subbasal nerve parameters under the implicit assumption that these are a representative sample of the central corneal nerve plexus. The purpose of this study is to present a technique for quantifying the number of random central corneal images required to achieve an acceptable level of accuracy in the measurement of corneal nerve fiber length and branch density. Methods Every possible combination of 2 to 16 images (where 16 was deemed the true mean) of the central corneal subbasal nerve plexus, not overlapping by more than 20%, were assessed for nerve fiber length and branch density in 20 subjects with type 2 diabetes and varying degrees of functional nerve deficit. Mean ratios were calculated to allow comparisons between and within subjects. Results In assessing nerve branch density, eight randomly chosen images not overlapping by more than 20% produced an average that was within 30% of the true mean 95% of the time. A similar sampling strategy of five images was 13% within the true mean 80% of the time for corneal nerve fiber length. Conclusions The “sample combination analysis” presented here can be used to determine the sample size required for a desired level of accuracy of quantification of corneal subbasal nerve parameters. This technique may have applications in other biological sampling studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims:  To investigate the relationship between retinal nerve fibre layer thickness and peripheral neuropathy in patients with Type 2 diabetes, particularly in those who are at higher risk of foot ulceration. Methods:  Global and sectoral retinal nerve fibre layer thicknesses were measured at 3.45 mm diameter around the optic nerve head using optical coherence tomography (OCT). The level of neuropathy was assessed in 106 participants (82 with Type 2 diabetes and 24 healthy controls) using the 0–10 neuropathy disability score. Participants were stratified into four neuropathy groups: none (0–2), mild (3–5), moderate (6–8), and severe (9–10). A neuropathy disability score ≥ 6 was used to define those at higher risk of foot ulceration. Multivariable regression analysis was performed to assess the effect of neuropathy disability scores, age, disease duration and retinopathy on RNFL thickness. Results:  Inferior (but not global or other sectoral) retinal nerve fibre layer thinning was associated with higher neuropathy disability scores (P = 0.03). The retinal nerve fibre layer was significantly thinner for the group with neuropathy disability scores ≥ 6 in the inferior quadrant (P < 0.005). Age, duration of disease and retinopathy levels did not significantly influence retinal nerve fibre layer thickness. Control participants did not show any significant differences in thickness measurements from the group with diabetes and no neuropathy (P > 0.24 for global and all sectors). Conclusions:  Inferior quadrant retinal nerve fibre layer thinning is associated with peripheral neuropathy in patients with Type 2 diabetes, and is more pronounced in those at higher risk of foot ulceration.