921 resultados para Brownian Motion with Returns to Zero


Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 60G48, 60G20, 60G15, 60G17. JEL Classification: G10

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of recovering information from measurement data has already been studied for a long time. In the beginning, the methods were mostly empirical, but already towards the end of the sixties Backus and Gilbert started the development of mathematical methods for the interpretation of geophysical data. The problem of recovering information about a physical phenomenon from measurement data is an inverse problem. Throughout this work, the statistical inversion method is used to obtain a solution. Assuming that the measurement vector is a realization of fractional Brownian motion, the goal is to retrieve the amplitude and the Hurst parameter. We prove that under some conditions, the solution of the discretized problem coincides with the solution of the corresponding continuous problem as the number of observations tends to infinity. The measurement data is usually noisy, and we assume the data to be the sum of two vectors: the trend and the noise. Both vectors are supposed to be realizations of fractional Brownian motions, and the goal is to retrieve their parameters using the statistical inversion method. We prove a partial uniqueness of the solution. Moreover, with the support of numerical simulations, we show that in certain cases the solution is reliable and the reconstruction of the trend vector is quite accurate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we consider the Brownian motion with jump boundary and present a new proof of a recent result of Li, Leung and Rakesh concerning the exact convergence rate in the one-dimensional case. Our methods are dierent and mainly probabilistic relying on coupling methods adapted to the special situation under investigation. Moreover we answer a question raised by Ben-Ari and Pinsky concerning the dependence of the spectral gap from the jump distribution in a multi-dimensional setting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two stochastic production frontier models are formulated within the generalized production function framework popularized by Zellner and Revankar (Rev. Econ. Stud. 36 (1969) 241) and Zellner and Ryu (J. Appl. Econometrics 13 (1998) 101). This framework is convenient for parsimonious modeling of a production function with returns to scale specified as a function of output. Two alternatives for introducing the stochastic inefficiency term and the stochastic error are considered. In the first the errors are added to an equation of the form h(log y, theta) = log f (x, beta) where y denotes output, x is a vector of inputs and (theta, beta) are parameters. In the second the equation h(log y,theta) = log f(x, beta) is solved for log y to yield a solution of the form log y = g[theta, log f(x, beta)] and the errors are added to this equation. The latter alternative is novel, but it is needed to preserve the usual definition of firm efficiency. The two alternative stochastic assumptions are considered in conjunction with two returns to scale functions, making a total of four models that are considered. A Bayesian framework for estimating all four models is described. The techniques are applied to USDA state-level data on agricultural output and four inputs. Posterior distributions for all parameters, for firm efficiencies and for the efficiency rankings of firms are obtained. The sensitivity of the results to the returns to scale specification and to the stochastic specification is examined. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the super-Brownian motion with a single point source in dimensions 2 and 3 as constructed by Fleischmann and Mueller in 2004. Using analytic facts we derive the long time behavior of the mean in dimension 2 and 3 thereby complementing previous work of Fleischmann, Mueller and Vogt. Using spectral theory and martingale arguments we prove a version of the strong law of large numbers for the two dimensional superprocess with a single point source and finite variance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We derive the Langevin equations for a spin interacting with a heat bath, starting from a fully dynamical treatment. The obtained equations are non-Markovian with multiplicative fluctuations and concommitant dissipative terms obeying the fluctuation-dissipation theorem. In the Markovian limit our equations reduce to the phenomenological equations proposed by Kubo and Hashitsume. The perturbative treatment on our equations lead to Landau-Lifshitz equations and to other known results in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of a small amount of Brownian diffusion on gravitational coagulation is numerically calculated by incorporating gravitational and interparticle forces (both attractive and repulsive), as well as hydrodynamic interactions. It is found that weak Brownian diffusion, the effect of which is nonlinearly coupled with gravity, can act to decrease the coagulation rate.