974 resultados para Bridges, Cantilever
Resumo:
Mode of access: Internet.
Resumo:
The yawing moment acting on the box-girder deck of reinforced concrete bridges constructed using the balanced cantilever method during the erection stage has been experimentally analyzed by testing different types of bridge cross-sections. Experimental results show that the yawing moment coefficient decreases as the bridge decks become streamlined, and that the yawing moment coefficient reaches a maximum when the bridge deck length is nearly twice the deck width.
Resumo:
Within the last century the interest in wind-induced loads over civil engineering structures has become more and more important, the reason being that the development of new construction techniques and materials has allowed engineers and architects to design new structures far from the traditional concepts, and in many cases wind actions over these singular structures are not included in the existing codes of practice. In this paper the windinduced static loads over bridges constructed by the double cantilever method during erection stages are considered. The aerodynamic load over a double cantilever bridge under a yawing-angled wind produces a yawing (torsional) moment on the bridge deck, which can lead to undesirable rotation of the deck about the supporting pier. The effects of the wind yaw angle and the length of the deck are analysed. The wind action caused by the presence of sliding concrete forms at the ends of the deck is also studied.
Resumo:
This research includes parametric studies performed with the use of three-dimensional nonlinear finite element models in order to investigate the effects of cantilever wingwall configurations on the behavior of integral abutment bridges located on straight alignment and zero skew. The parametric studies include all three types of cantilever wingwalls; inline, flared, and U-shaped wingwalls. Bridges analyzed vary in length from 100 to 1200 feet. Soil-structure and soil-pile interaction are included in the analysis. Loadings include dead load in combination with temperature loads in both rising and falling temperatures. Plasticity in the integral abutment piles is investigated by means of nonlinear plasticity models. Cracking in the abutments and stresses in the reinforcing steel are investigated by means of nonlinear concrete models. The effects of wingwall configurations are assessed in terms of stresses in the integral abutment piles, cracking in the abutment walls, stresses in the reinforcing steel of abutment walls, and axial forces induced in the steel girders. The models developed are analyzed for three types of soil behind the abutments and wingwalls; dense sand, medium dense sand, and loose sand. In addition, the models consider both the case of presence and absence of predrilled holes at the top nine feet of piles. The soil around the piles below the predrilled holes consists of very stiff clay. The results indicate that for the stresses in the piles, the critical load is temperature contraction and the most critical parameter is the use of predrilled holes. However, for both the stresses in the reinforcing steel and the axial forces induced in the girders, the critical load is temperature expansion and the critical parameter is the bridge length. In addition, the results indicate that the use of cantilever wingwalls in integral abutment bridges results in an increase in the magnitude of axial forces in the steel girders during temperature expansion and generation of pile plasticity at shorter bridge lengths compared to bridges built without cantilever wingwalls.
Resumo:
Uncertainties in damping estimates can significantly affect the dynamic response of a given flexible structure. A common practice in linear structural dynamics is to consider a linear viscous damping model as the major energy dissipation mechanism. However, it is well known that different forms of energy dissipation can affect the structure's dynamic response. The major goal of this paper is to address the effects of the turbulent frictional damping force, also known as drag force on the dynamic behavior of a typical flexible structure composed of a slender cantilever beam carrying a lumped-mass on the tip. First, the system's analytical equation is obtained and solved by employing a perturbation technique. The solution process considers variations of the drag force coefficient and its effects on the system's response. Then, experimental results are presented to demonstrate the effects of the nonlinear quadratic damping due to the turbulent frictional force on the system's dynamic response. In particular, the effects of the quadratic damping on the frequency-response and amplitude-response curves are investigated. Numerically simulated as well as experimental results indicate that variations on the drag force coefficient significantly alter the dynamics of the structure under investigation. Copyright (c) 2008 D. G. Silva and P. S. Varoto.
Resumo:
Some antimicrobial peptides have a broad spectrum of action against many different kinds of microorganisms. Gomesin and protegrin-1 are examples of such antimicrobial peptides, and they were studied by molecular dynamics in this research. Both have a beta-hairpin conformation stabilized by two disulfide bridges and are active against Gram-positive and Gram-negative bacteria, as well as fungi. In this study, the role of the disulfide bridge in the maintenance of the tertiary peptide structure of protegrin-1 and gomesin is analyzed by the structural characteristics of these peptides and two of their respective variants, gomy4 and proty4, in which the four cysteines are replaced by four tyrosine residues. The absence of disulfide bridges in gomy4 and proty4 is compensated by overall reinforcement of the original hydrogen bonds and extra attractive interactions between the aromatic rings of the tyrosine residues. The net effects on the variants with respect to the corresponding natural peptides are: i) maintenance of the original beta-hairpin conformation, with great structural similarities between the mutant and the corresponding natural peptide; ii) combination of positive F and. Ramachandran angles within the hairpin head region with a qualitative change to a combination of positive (F) and negative (.) angles, and iii) significant increase in structural flexibility. Experimental facts about the antimicrobial activity of the gomesin and protegrin-1 variants have also been established here, in the hope that the detailed data provided in the present study may be useful for understanding the mechanism of action of these peptides.
Resumo:
Objective: To identify the skeletal, dentoalveolar, and soft tissue changes that occur during Class II correction with the Cantilever Bite Jumper (CBJ). Materials and Methods: This prospective cephalometric study was conducted on 26 subjects with Class II division 1 malocclusion treated with the CBJ appliance. A comparison was made with 26 untreated subjects with Class II malocclusion. Lateral head films from before and after CBJ therapy were analyzed through conventional cephalometric and Johnston analyses. Results: Class II correction was accomplished by means of 2.9 mm apical base change, 1.5 mm distal movement of the maxillary molars, and 1.1 mm mesial movement of the mandibular molars. The CBJ exhibited good control of the vertical dimension. The main side effect of the CBJ is that the vertical force vectors of the telescope act as lever arms and can produce mesial tipping of the mandibular molars. Conclusions: The Cantilever Bite Jumper corrects Class II malocclusions with similar percentages of skeletal and dentoalveolar effects. (Angle Orthod. 2009:79;)
Resumo:
Honeycomb structures have been used in different engineering fields. In civil engineering, honeycomb fiber-reinforced polymer (FRP) structures have been used as bridge decks to rehabilitate highway bridges in the United States. In this work, a simplified finite-element modeling technique for honeycomb FRP bridge decks is presented. The motivation is the combination of the complex geometry of honeycomb FRP decks and computational limits, which may prevent modeling of these decks in detail. The results from static and modal analyses indicate that the proposed modeling technique provides a viable tool for modeling the complex geometry of honeycomb FRP bridge decks. The modeling of other bridge components (e.g., steel girders, steel guardrails, deck-to-girder connections, and pier supports) is also presented in this work.
Resumo:
Purpose: Chipping within veneering porcelain has resulted in high clinical failure rates for implant-supported zirconia (yttria-tetragonal zirconia polycrystals [Y-TZP]) bridges. This study evaluated the reliability and failure modes of mouth-motion step-stress fatigued implant-supported Y-TZP versus palladium-silver alloy (PdAg) three-unit bridges. Materials and Methods: Implant-abutment replicas were embedded in polymethylmethacrylate resin. Y-TZP and PdAg frameworks, of similar design (n = 21 each), were fabricated, veneered, cemented (n = 3 each), and Hertzian contact-tested to obtain ultimate failure load. In each framework group, 18 specimens were distributed across three step-stress profiles and mouth-motion cyclically loaded according to the profile on the lingual slope of the buccal cusp of the pontic. Results: PdAg failures included competing flexural cracking at abutment and/or connector area and chipping, whereas Y-TZP presented predominantly cohesive failure within veneering porcelain. Including all failure modes, the reliability (two-sided at 90% confidence intervals) for a ""mission"" of 50,000 and 100,000 cycles at 300 N load was determined (Alta Pro, Reliasoft, Tucson, AZ, USA). No difference in reliability was observed between groups for a mission of 50,000. Reliability remained unchanged for a mission of 100,000 for PdAg, but significantly decreased for Y-TZP. Conclusions: Higher reliability was found for PdAg for a mission of 100,000 cycles at 300 N. Failure modes differed between materials.
Resumo:
The purpose of this in vitro study was to analyze the stress distribution on components of a mandibular-cantilevered implant-supported prosthesis with frameworks cast in cobalt-chromium (Co-Cr) or palladium-silver (Pd-Ag) alloys, according to the cantilever length. Frameworks were fabricated on (Co-Cr) and (Pd-Ag) alloys and screwed into standard abutments positioned on a master-cast containing five implant replicas. Two linear strain gauges were fixed on the mesial and distal aspects of each abutment to capture deformation. A vertical static load of 100 N was applied to the cantilever arm at the distances of 10, 15, and 20 mm from the center of the distal abutment and the absolute values of specific deformation were recorded. Different patterns of abutment deformation were observed according to the framework alloy. The Co-Cr alloy framework resulted in higher levels of abutment deformation than the silver-palladium alloy framework. Abutment deformation was higher with longer cantilever extensions. Physical properties of the alloys used for framework interfere with abutment deformations patterns. Excessively long cantilever extensions must be avoided. To cite this article:Jacques LB, Moura MS, Suedam V, Souza EAC, Rubo JH. Effect of cantilever length and framework alloy on the stress distribution of mandibular-cantilevered implant-supported prostheses.Clin. Oral Impl. Res. 20, 2009; 737-741.doi: 10.1111/j.1600-0501.2009.01712.x.
Resumo:
There are many methods for the analysis and design of embedded cantilever retaining walls. They involve various different simplifications of the pressure distribution to allow calculation of the limiting equilibrium retained height and the bending moment when the retained height is less than the limiting equilibrium value, i.e. the serviceability case. Recently, a new method for determining the serviceability earth pressure and bending moment has been proposed. This method makes an assumption defining the point of zero net pressure. This assumption implies that the passive pressure is not fully mobilised immediately below the excavation level. The finite element analyses presented in this paper examine the net pressure distribution on walls in which the retained height is less, than the limiting equilibrium value. The study shows that for all practical walls, the earth pressure distributions on the front and back of the wall are at their limit values, Kp and K-a respectively, when the lumped factor of safety F-r is less than or equal to2.0. A rectilinear net pressure distribution is proposed that is intuitively logical. It produces good predictions of the complete bending moment diagram for walls in the service configuration and the proposed method gives results that have excellent agreement with centrifuge model tests. The study shows that the method for determining the serviceability bending moment suggested by Padfield and Mair(1) in the CIRIA Report 104 gives excellent predictions of the maximum bending moment in practical cantilever walls. It provides the missing data that have been needed to verify and justify the CIRIA 104 method.
Resumo:
The increase of mortality from cancer brought urgency in identification and validation of predictive markers of risk and therefore early diagnosis. There is evidence that cytogenetic biomarkers are positively correlated with risk of cancer, and this is validated by studies of cohort and case-control. Cytokinesis-blocked micronucleus (CBMN) assay is used extensively in molecular epidemiology, and can be considered as a “cytome” assay covering cell proliferation, apoptosis, necrosis and chromosomal changes. The chromosomal alterations most reported and studied by the CBMN are: micronucleus (MN), nucleoplasmic bridges (NPB) and nuclear buds (NBUDS). The use of the MN assay in biomonitoring studies had a large increase in the last 15 years and international projects such as the HUMN have helped to increase the applicability and reliability of these tests.