862 resultados para Branch-and-bound algorithm
Resumo:
A branch and bound type algorithm is presented in this paper to the problem of finding a transportation schedule which minimises the total transportation cost, where the transportation cost over each route is assumed to be a piecewice linear continuous convex function with increasing slopes. The algorithm is an extension of the work done by Balachandran and Perry, in which the transportation cost over each route is assumed to beapiecewise linear discontinuous function with decreasing slopes. A numerical example is solved illustrating the algorithm.
Resumo:
Discrete optimization problems are very difficult to solve, even if the dimention is small. For most of them the problem of finding an ε-approximate solution is already NP-hard. The branch-and-bound algorithms are the most used algorithms for solving exactly this sort of problems.
Resumo:
Discrete optimization problems are very difficult to solve, even if the dimantion is small. For most of them the problem of finding an ε-approximate solution is already NP-hard.
Resumo:
The multiprocessor task graph scheduling problem has been extensively studied asacademic optimization problem which occurs in optimizing the execution time of parallelalgorithm with parallel computer. The problem is already being known as one of the NPhardproblems. There are many good approaches made with many optimizing algorithmto find out the optimum solution for this problem with less computational time. One ofthem is branch and bound algorithm.In this paper, we propose a branch and bound algorithm for the multiprocessor schedulingproblem. We investigate the algorithm by comparing two different lower bounds withtheir computational costs and the size of the pruned tree.Several experiments are made with small set of problems and results are compared indifferent sections.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A method for optimal transmission network expansion planning is presented. The transmission network is modelled as a transportation network. The problem is solved using hierarchical Benders decomposition in which the problem is decomposed into master and slave subproblems. The master subproblem models the investment decisions and is solved using a branch-and-bound algorithm. The slave subproblem models the network operation and is solved using a specialised linear program. Several alternative implementations of the branch-and-bound algorithm have been rested. Special characteristics of the transmission expansion problem have been taken into consideration in these implementations. The methods have been tested on various test systems available in the literature.
Resumo:
An algorithm is presented that finds the optimal plan long-term transmission for till cases studied, including relatively large and complex networks. The knowledge of optimal plans is becoming more important in the emerging competitive environment, to which the correct economic signals have to be sent to all participants. The paper presents a new specialised branch-and-bound algorithm for transmission network expansion planning. Optimality is obtained at a cost, however: that is the use of a transportation model for representing the transmission network, in this model only the Kirchhoff current law is taken into account (the second law being relaxed). The expansion problem then becomes an integer linear program (ILP) which is solved by the proposed branch-and-bound method without any further approximations. To control combinatorial explosion the branch- and bound algorithm is specialised using specific knowledge about the problem for both the selection of candidate problems and the selection of the next variable to be used for branching. Special constraints are also used to reduce the gap between the optimal integer solution (ILP program) and the solution obtained by relaxing the integrality constraints (LP program). Tests have been performed with small, medium and large networks available in the literature.
Resumo:
A branch and bound (B& B) algorithm using the DC model, to solve the power system transmission expansion planning by incorporating the electrical losses in network modelling problem is presented. This is a mixed integer nonlinear programming (MINLP) problem, and in this approach, the so-called fathoming tests in the B&B algorithm were redefined and a nonlinear programming (NLP) problem is solved in each node of the B& B tree, using an interior-point method. Pseudocosts were used to manage the development of the B&B tree and to decrease its size and the processing time. There is no guarantee of convergence towards global optimisation for the MINLP problem. However, preliminary tests show that the algorithm easily converges towards the best-known solutions or to the optimal solutions for all the tested systems neglecting the electrical losses. When the electrical losses are taken into account, the solution obtained using the Garver system is better than the best one known in the literature.
Resumo:
This work presents a branch-and-bound algorithm to solve the multi-stage transmission expansion planning problem. The well known transportation model is employed, nevertheless the algorithm can be extended to hybrid models or to more complex ones such as the DC model. Tests with a realistic power system were carried out in order to show the performance of the algorithm for the expansion plan executed for different time frames. © 2005 IEEE.
Resumo:
This paper presents an algorithm to solve the network transmission system expansion planning problem using the DC model which is a mixed non-linear integer programming problem. The major feature of this work is the use of a Branch-and-Bound (B&B) algorithm to directly solve mixed non-linear integer problems. An efficient interior point method is used to solve the non-linear programming problem at each node of the B&B tree. Tests with several known systems are presented to illustrate the performance of the proposed method. ©2007 IEEE.
Resumo:
In this paper a novel Branch and Bound (B&B) algorithm to solve the transmission expansion planning which is a non-convex mixed integer nonlinear programming problem (MINLP) is presented. Based on defining the options of the separating variables and makes a search in breadth, we call this algorithm a B&BML algorithm. The proposed algorithm is implemented in AMPL and an open source Ipopt solver is used to solve the nonlinear programming (NLP) problems of all candidates in the B&B tree. Strategies have been developed to address the problem of non-linearity and non-convexity of the search region. The proposed algorithm is applied to the problem of long-term transmission expansion planning modeled as an MINLP problem. The proposed algorithm has carried out on five commonly used test systems such as Garver 6-Bus, IEEE 24-Bus, 46-Bus South Brazilian test systems, Bolivian 57-Bus, and Colombian 93-Bus. Results show that the proposed methodology not only can find the best known solution but it also yields a large reduction between 24% to 77.6% in the number of NLP problems regarding to the size of the systems.
Resumo:
Bibliography: p. 39.
Resumo:
Bibliography: p. 29.
Resumo:
This paper presents the formulation of a combinatorial optimization problem with the following characteristics: (i) the search space is the power set of a finite set structured as a Boolean lattice; (ii) the cost function forms a U-shaped curve when applied to any lattice chain. This formulation applies for feature selection in the context of pattern recognition. The known approaches for this problem are branch-and-bound algorithms and heuristics that explore partially the search space. Branch-and-bound algorithms are equivalent to the full search, while heuristics are not. This paper presents a branch-and-bound algorithm that differs from the others known by exploring the lattice structure and the U-shaped chain curves of the search space. The main contribution of this paper is the architecture of this algorithm that is based on the representation and exploration of the search space by new lattice properties proven here. Several experiments, with well known public data, indicate the superiority of the proposed method to the sequential floating forward selection (SFFS), which is a popular heuristic that gives good results in very short computational time. In all experiments, the proposed method got better or equal results in similar or even smaller computational time. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A constructive heuristic algorithm to solve the transmission system expansion planning problem is proposed with the aim of circumventing some critical problems of classical heuristic algorithms that employ relaxed mathematical models to calculate a sensitivity index that guides the circuit additions. The proposed heuristic algorithm is in a branch-and-bound algorithm structure, which can be used with any planning model, such as Transportation model, DC model, AC model or Hybrid models. Tests of the proposed algorithm are presented on real Brazilian systems.