880 resultados para Brain-based


Relevância:

100.00% 100.00%

Publicador:

Resumo:

RatSLAM is a navigation system based on the neural processes underlying navigation in the rodent brain, capable of operating with low resolution monocular image data. Seminal experiments using RatSLAM include mapping an entire suburb with a web camera and a long term robot delivery trial. This paper describes OpenRatSLAM, an open-source version of RatSLAM with bindings to the Robot Operating System framework to leverage advantages such as robot and sensor abstraction, networking, data playback, and visualization. OpenRatSLAM comprises connected ROS nodes to represent RatSLAM’s pose cells, experience map, and local view cells, as well as a fourth node that provides visual odometry estimates. The nodes are described with reference to the RatSLAM model and salient details of the ROS implementation such as topics, messages, parameters, class diagrams, sequence diagrams, and parameter tuning strategies. The performance of the system is demonstrated on three publicly available open-source datasets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current state of the art robot mapping and navigation systems produce impressive performance under a narrow range of robot platform, sensor and environmental conditions, in contrast to animals such as rats that produce “good enough” maps that enable them to function under an incredible range of situations. In this paper we present a rat-inspired featureless sensor-fusion system that assesses the usefulness of multiple sensor modalities based on their utility and coherence for place recognition during a navigation task, without knowledge as to the type of sensor. We demonstrate the system on a Pioneer robot in indoor and outdoor environments with abrupt lighting changes. Through dynamic weighting of the sensors, the system is able to perform correct place recognition and mapping where the static sensor weighting approach fails.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article analyzes the “messy and numberless beginnings” of the hope placed upon neurological foundationalism to provide a solution to the “problem” of differences between students and to the achievement of educational goals. Rather than arguing for or against educational neuroscience, the article moves through five levels to examine the conditions of possibility for subscribing to the brain as a causal organological locus of learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2015

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ofrece a los profesores, estudiantes y padres, prácticas y sugerencias para la aplicación del aprendizaje, basado en cómo está configurado el cerebro del niño en sus primeros años de vida. Se enumeran ideas sobre cómo usar técnicas de aprendizaje que incluyen las formas de promover la autoestima y la inteligencia emocional, las ideas para la enseñanza a través del juego, música y movimiento, actividades para la hora de la asamblea, asesoramiento sobre el manejo de la conducta positiva y fomento de las relaciones con padres y cuidadores. Los estudios de casos, tomados de una variedad de entornos, dan una idea de cómo las técnicas basadas en el cerebro pueden ser utilizados para enriquecer la experiencia de aprendizaje de los niños pequeños.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: As scholars who prepare future school leaders to be innovative instructional leaders for their learning communities, we are on the verge of a curriculum design revolution. The application of brain research findings promotes educational reform efforts to systemically change the way in which children experience school. However, most educators, school leaders, board members, and policy makers are ill prepared to reconsider the implications for assessment, pedagogy, school climate, daily schedules, and use of technology. This qualitative study asked future school leaders to reconsider how school leadership preparedness programs prepared them to become instructional leaders for the 21st century. The findings from this study will enhance the field of school leadership, challenging the current emphasis placed on standardized testing, traditional school calendars, assessments, monocultural instructional methods, and meeting the needs of diverse learning communities. [See PDF for complete abstract]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present global and regional rates of brain atrophy measured on serially acquired Tl-weighted brain MR images for a group of Alzheimer's disease (AD) patients and age-matched normal control (NC) subjects using the analysis procedure described in Part I. Three rates of brain atrophy: the rate of atrophy in the cerebrum, the rate of lateral ventricular enlargement and the rate of atrophy in the region of temporal lobes, were evaluated for 14 AD patients and 14 age-matched NC subjects. All three rates showed significant differences between the two groups. However, the greatest separation of the two groups was obtained when the regional rates were combined. This application has demonstrated that rates of brain atrophy, especially in specific regions of the brain, based on MR images can provide sensitive measures for evaluating the progression of AD. These measures will be useful for the evaluation of therapeutic effects of novel therapies for AD.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This article reviews a particular aspect of the critique of the increasing focus on the brain and neuroscience; what has been termed by some, 'neuromania'. It engages with the growing literature produced in response to the 'first three years' movement: an alliance of child welfare advocates and politicians that draws on the authority of neuroscience to argue that social problems such as inequality, poverty, educational underachievement, violence and mental illness are best addressed through 'early intervention' programmes to protect or enhance emotional and cognitive aspects of children's brain development. The movement began in the United States in the early 1990s and has become increasingly vocal and influential since then, achieving international legitimacy in the United States, Canada, New Zealand, Australia, the UK and elsewhere. The movement, and the brain-based culture of expert-led parent training that has grown with it, has been criticised for claiming scientific authority whilst taking a cavalier approach to scientific method and evidence; for being overly deterministic about the early years of life; for focusing attention on individual parental failings rather than societal or structural problems, for adding to the expanding anxieties of parents and strengthening the intensification of parenting and, ultimately, for redefining the parent-child relationship in biologised, instrumental and dehumanised terms. © 2014 John Wiley & Sons Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pattern classification of human brain activity provides unique insight into the neural underpinnings of diverse mental states. These multivariate tools have recently been used within the field of affective neuroscience to classify distributed patterns of brain activation evoked during emotion induction procedures. Here we assess whether neural models developed to discriminate among distinct emotion categories exhibit predictive validity in the absence of exteroceptive emotional stimulation. In two experiments, we show that spontaneous fluctuations in human resting-state brain activity can be decoded into categories of experience delineating unique emotional states that exhibit spatiotemporal coherence, covary with individual differences in mood and personality traits, and predict on-line, self-reported feelings. These findings validate objective, brain-based models of emotion and show how emotional states dynamically emerge from the activity of separable neural systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To successfully navigate their habitats, many mammals use a combination of two mechanisms, path integration and calibration using landmarks, which together enable them to estimate their location and orientation, or pose. In large natural environments, both these mechanisms are characterized by uncertainty: the path integration process is subject to the accumulation of error, while landmark calibration is limited by perceptual ambiguity. It remains unclear how animals form coherent spatial representations in the presence of such uncertainty. Navigation research using robots has determined that uncertainty can be effectively addressed by maintaining multiple probabilistic estimates of a robot's pose. Here we show how conjunctive grid cells in dorsocaudal medial entorhinal cortex (dMEC) may maintain multiple estimates of pose using a brain-based robot navigation system known as RatSLAM. Based both on rodent spatially-responsive cells and functional engineering principles, the cells at the core of the RatSLAM computational model have similar characteristics to rodent grid cells, which we demonstrate by replicating the seminal Moser experiments. We apply the RatSLAM model to a new experimental paradigm designed to examine the responses of a robot or animal in the presence of perceptual ambiguity. Our computational approach enables us to observe short-term population coding of multiple location hypotheses, a phenomenon which would not be easily observable in rodent recordings. We present behavioral and neural evidence demonstrating that the conjunctive grid cells maintain and propagate multiple estimates of pose, enabling the correct pose estimate to be resolved over time even without uniquely identifying cues. While recent research has focused on the grid-like firing characteristics, accuracy and representational capacity of grid cells, our results identify a possible critical and unique role for conjunctive grid cells in filtering sensory uncertainty. We anticipate our study to be a starting point for animal experiments that test navigation in perceptually ambiguous environments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rats are superior to the most advanced robots when it comes to creating and exploiting spatial representations. A wild rat can have a foraging range of hundreds of meters, possibly kilometers, and yet the rodent can unerringly return to its home after each foraging mission, and return to profitable foraging locations at a later date (Davis, et al., 1948). The rat runs through undergrowth and pipes with few distal landmarks, along paths where the visual, textural, and olfactory appearance constantly change (Hardy and Taylor, 1980; Recht, 1988). Despite these challenges the rat builds, maintains, and exploits internal representations of large areas of the real world throughout its two to three year lifetime. While algorithms exist that allow robots to build maps, the questions of how to maintain those maps and how to handle change in appearance over time remain open. The robotic approach to map building has been dominated by algorithms that optimise the geometry of the map based on measurements of distances to features. In a robotic approach, measurements of distance to features are taken with range-measuring devices such as laser range finders or ultrasound sensors, and in some cases estimates of depth from visual information. The features are incorporated into the map based on previous readings of other features in view and estimates of self-motion. The algorithms explicitly model the uncertainty in measurements of range and the measurement of self-motion, and use probability theory to find optimal solutions for the geometric configuration of the map features (Dissanayake, et al., 2001; Thrun and Leonard, 2008). Some of the results from the application of these algorithms have been impressive, ranging from three-dimensional maps of large urban strucutures (Thrun and Montemerlo, 2006) to natural environments (Montemerlo, et al., 2003).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We describe recent biologically-inspired mapping research incorporating brain-based multi-sensor fusion and calibration processes and a new multi-scale, homogeneous mapping framework. We also review the interdisciplinary approach to the development of the RatSLAM robot mapping and navigation system over the past decade and discuss the insights gained from combining pragmatic modelling of biological processes with attempts to close the loop back to biology. Our aim is to encourage the pursuit of truly interdisciplinary approaches to robotics research by providing successful case studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cortical connectivity is associated with cognitive and behavioral traits that are thought to vary between sexes. Using high-angular resolution diffusion imaging at 4 Tesla, we scanned 234 young adult twins and siblings (mean age: 23.4 2.0 SD years) with 94 diffusion-encoding directions. We applied a novel Hough transform method to extract fiber tracts throughout the entire brain, based on fields of constant solid angle orientation distribution functions (ODFs). Cortical surfaces were generated from each subject's 3D T1-weighted structural MRI scan, and tracts were aligned to the anatomy. Network analysis revealed the proportions of fibers interconnecting 5 key subregions of the frontal cortex, including connections between hemispheres. We found significant sex differences (147 women/87 men) in the proportions of fibers connecting contralateral superior frontal cortices. Interhemispheric connectivity was greater in women, in line with long-standing theories of hemispheric specialization. These findings may be relevant for ongoing studies of the human connectome.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Population-based brain mapping provides great insight into the trajectory of aging and dementia, as well as brain changes that normally occur over the human life span.We describe three novel brain mapping techniques, cortical thickness mapping, tensor-based morphometry (TBM), and hippocampal surface modeling, which offer enormous power for measuring disease progression in drug trials, and shed light on the neuroscience of brain degeneration in Alzheimer's disease (AD) and mild cognitive impairment (MCI).We report the first time-lapse maps of cortical atrophy spreading dynamically in the living brain, based on averaging data from populations of subjects with Alzheimer's disease and normal subjects imaged longitudinally with MRI. These dynamic sequences show a rapidly advancing wave of cortical atrophy sweeping from limbic and temporal cortices into higher-order association and ultimately primary sensorimotor areas, in a pattern that correlates with cognitive decline. A complementary technique, TBM, reveals the 3D profile of atrophic rates, at each point in the brain. A third technique, hippocampal surface modeling, plots the profile of shape alterations across the hippocampal surface. The three techniques provide moderate to highly automated analyses of images, have been validated on hundreds of scans, and are sensitive to clinically relevant changes in individual patients and groups undergoing different drug treatments. We compare time-lapse maps of AD, MCI, and other dementias, correlate these changes with cognition, and relate them to similar time-lapse maps of childhood development, schizophrenia, and HIV-associated brain degeneration. Strengths and weaknesses of these different imaging measures for basic neuroscience and drug trials are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Resumen: Entre el sueño y la muerte hay “sólo una distancia”. El dormir encierra un misterio que se aviva con los sueños y, al parecer, habrían prefigurado al mismo método científico moderno. Descartes pensó que en sus sueños se transmitía el espíritu de la verdad. El alma soñadora e inmortal adquirió notoriedad en su dualismo, al tiempo que dejó de asociársela con la muerte. Tres siglos después, la medicina permitió identificar individuos que estaban muertos, aunque pareciesen dormidos (coma dépassé). Así reapareció la asociación sueño-muerte, pero ahora con médicos provistos del “diagnóstico anátomo-clínico” que, por su herencia cartesiana, demandará evidencias. La duda metódica integrada al pensamiento científico, aportaría incertidumbre a las formulaciones cerebrales de la muerte. Este trabajo repasa el valor de los sueños para el pensamiento occidental, busca al “hombre-máquina” dentro de los criterios neurológicos del fallecido y, con la ayuda de la Filosofía, intenta comprender algunas objeciones en torno a la licitud del diagnóstico de “muerte encefálica”. Se propone una revisión sucinta de la obra del filósofo francés y su reflejo en aspectos del debate ofrecido por la literatura médica.