951 resultados para Box-columns
Resumo:
Losses of horticulture product in Brazil are significant and among the main causes are the use of inappropriate boxes and the absence of a cold chain. A project for boxes is proposed, based on computer simulations, optimization and experimental validation, trying to minimize the amount of wood associated with structural and ergonomic aspects and the effective area of the openings. Three box prototypes were designed and built using straight laths with different configurations and areas of openings (54% and 36%). The cooling efficiency of Tommy Atkins mango (Mangifera Indica L.) was evaluated by determining the cooling time for fruit packed in the wood models and packed in the commercially used cardboard boxes, submitted to cooling in a forced-air system, at a temperature of 6ºC and average relative humidity of 85.4±2.1%. The Finite Element Method was applied, for the dimensioning and structural optimization of the model with the best behavior in relation to cooling. All wooden boxes with fruit underwent vibration testing for two hours (20 Hz). There was no significant difference in average cooling time in the wooden boxes (36.08±1.44 min); however, the difference was significant in comparison to the cardboard boxes (82.63±29.64 min). In the model chosen for structural optimization (36% effective area of openings and two side laths), the reduction in total volume of material was 60% and 83% in the cross section of the columns. There was no indication of mechanical damage in the fruit after undergoing the vibration test. Computer simulations and structural study may be used as a support tool for developing projects for boxes, with geometric, ergonomic and thermal criteria.
Resumo:
This paper makes two points. First, we show that the line-of-sight solution to cosmic microwave anisotropies in Fourier space, even though formally defined for arbitrarily large wavelengths, leads to position-space solutions which only depend on the sources of anisotropies inside the past light cone of the observer. This foretold manifestation of causality in position (real) space happens order by order in a series expansion in powers of the visibility gamma = e(-mu), where mu is the optical depth to Thomson scattering. We show that the contributions of order gamma(N) to the cosmic microwave background (CMB) anisotropies are regulated by spacetime window functions which have support only inside the past light cone of the point of observation. Second, we show that the Fourier-Bessel expansion of the physical fields (including the temperature and polarization momenta) is an alternative to the usual Fourier basis as a framework to compute the anisotropies. The viability of the Fourier-Bessel series for treating the CMB is a consequence of the fact that the visibility function becomes exponentially small at redshifts z >> 10(3), effectively cutting off the past light cone and introducing a finite radius inside which initial conditions can affect physical observables measured at our position (x) over right arrow = 0 and time t(0). Hence, for each multipole l there is a discrete tower of momenta k(il) (not a continuum) which can affect physical observables, with the smallest momenta being k(1l) similar to l. The Fourier-Bessel modes take into account precisely the information from the sources of anisotropies that propagates from the initial value surface to the point of observation-no more, no less. We also show that the physical observables (the temperature and polarization maps), and hence the angular power spectra, are unaffected by that choice of basis. This implies that the Fourier-Bessel expansion is the optimal scheme with which one can compute CMB anisotropies.
Resumo:
A secure communication system based on the error-feedback synchronization of the electronic model of the particle-in-a-box system is proposed. This circuit allows a robust and simple electronic emulation of the mechanical behavior of the collisions of a particle inside a box, exhibiting rich chaotic behavior. The required nonlinearity to emulate the box walls is implemented in a simple way when compared with other analog electronic chaotic circuits. A master/slave synchronization of two circuits exhibiting a rich chaotic behavior demonstrates the potentiality of this system to secure communication. In this system, binary data stream information modulates the bifurcation parameter of the particle-in-a-box electronic circuit in the transmitter. In the receiver circuit, this parameter is estimated using Pecora-Carroll synchronization and error-feedback synchronization. The performance of the demodulation process is verified through the eye pattern technique applied on the recovered bit stream. During the demodulation process, the error-feedback synchronization presented better performance compared with the Pecora-Carroll synchronization. The application of the particle-in-a-box electronic circuit in a secure communication system is demonstrated.
Resumo:
This paper presents an investigation of design code provisions for steel-concrete composite columns. The study covers the national building codes of United States, Canada and Brazil, and the transnational EUROCODE. The study is based on experimental results of 93 axially loaded concrete-filled tubular steel columns. This includes 36 unpublished, full scale experimental results by the authors and 57 results from the literature. The error of resistance models is determined by comparing experimental results for ultimate loads with code-predicted column resistances. Regression analysis is used to describe the variation of model error with column slenderness and to describe model uncertainty. The paper shows that Canadian and European codes are able to predict mean column resistance, since resistance models of these codes present detailed formulations for concrete confinement by a steel tube. ANSI/AISC and Brazilian codes have limited allowance for concrete confinement, and become very conservative for short columns. Reliability analysis is used to evaluate the safety level of code provisions. Reliability analysis includes model error and other random problem parameters like steel and concrete strengths, and dead and live loads. Design code provisions are evaluated in terms of sufficient and uniform reliability criteria. Results show that the four design codes studied provide uniform reliability, with the Canadian code being best in achieving this goal. This is a result of a well balanced code, both in terms of load combinations and resistance model. The European code is less successful in providing uniform reliability, a consequence of the partial factors used in load combinations. The paper also shows that reliability indexes of columns designed according to European code can be as low as 2.2, which is quite below target reliability levels of EUROCODE. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents the experimental results of 32 axially loaded concrete-filled steel tubular columns (CFT). The load was introduced only on the concrete core by means of two high strength steel cylinders placed at the column ends to evaluate the passive confinement provided by the steel tube. The columns were filled with structural concretes with compressive strengths of 30, 60, 80 and 100 MPa. The outer diameter (D) of the column was 114.3 mm, and the length/diameter (L/D) ratios considered were 3, 5, 7 and 10. The wall thicknesses of the tubes (t) were 3.35 mm and 6.0 mm, resulting in diameter/thickness (D/t) ratios of 34 and 19, respectively. The force vs. axial strain curves obtained from the tests showed, in general, a good post-peak behavior of the CFT columns, even for those columns filled with high strength concrete. Three analytical models of confinement for short concrete-filled columns found in the literature were used to predict the axial capacity of the columns tested. To apply these models to slender columns, a correction factor was introduced to penalize the calculated results, giving good agreement with the experimental values. Additional results of 63 CFT columns tested by other researchers were also compared to the predictions of the modified analytical models and presented satisfactory results. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents an experimental analysis of the confinement effects in steel-concrete composite columns regarding two parameters: concrete compressive strength and column slenderness. Sixteen concrete-filled steel tubular columns with circular cross section were tested under axial loading. The tested columns were filled by concrete with compressive strengths of 30, 60. 80, and 100 MPa, and had length/diameter ratios of 3, 5, 7, and 10. The experimental values of the columns` ultimate load were compared to the predictions of 4 code provisions: the Brazilian Code NBR 8800:2008, Eurocode 4 (EN 1994-1-1:2004), AINSI/AISC 360:2005, and CAN/CSA S16-01:2001. According to the results, the load capacity of the composite columns increased with increasing concrete strength and decreased with increasing length/diameter ratio. In general, the code provisions were highly accurate in the prediction of column capacity. Among them, the Brazilian Code was the most conservative, while Eurocode 4 presented the values closest to the experimental results. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this paper results of tests on 32 concrete-filled steel tubular columns under axial load are reported. The test parameters were the concrete compressive strength, the column slenderness (L/D) and the wall thickness (t). The test results were compared with predictions from the codes NBR 8800:2008 and EN 1994-1-1:2004 (EC4). The columns were 3, 5, 7 and 10 length to diameter ratios (L/D) and were tested with 30MPa, 60MPa, 80MPa and 100MPa concrete compressive strengths. The results of ultimate strength predicted by codes showed good agreement with experimental results. The results of NBR 8800 code were the most conservative and the EC4 showed the best results, in mean, but it was not conservative for usual concrete-filled short columns.
Resumo:
Although use of high-strength reinforced concrete (RC) jackets has become common practice worldwide, there are still two unresolved issues regarding the contribution of the original concrete and the effects of existing loads. Twelve RC-jacketed columns were tested with and without preloading under uniaxial compression. Tests showed the entire core to contribute to the capacity of the jacketed column, as long as adequate confinement is provided. Also, preloading does not adversely affect the capacity of the jacketed column, while it may increase its deformability, especially in square sections. Transverse reinforcement in the jacket directly improves ductility of the strengthened column, especially in circular sections.
Resumo:
Gamma ray tomography experiments have been carried out to detect spatial patterns in the porosity in a 0.27 m diameter column packed with steel Rashig rings of different sizes: 12.6, 37.9, and 76 mm. using a first generation CT system (Chen et al., 1998). A fast Fourier transform tomographic reconstruction algorithm has been used to calculate the spatial variation over the column cross section. Cross-sectional gas porosity and solid holdup distribution were determinate. The values of cross-sectional average gas porosity were epsilon=0.849, 0.938 and 0.966 for the 12.6, 37.9, and 76 mm rings, respectively. Radial holdup variation within the packed bed has been determined. The variation of the circumferentially averaged gas holdup in the radial direction indicates that the porosity in the column wall region is a somewhat higher than that in the bulk region, due to the effect of the column wall. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents the design of a low cost accessible digital television set-top box. This set-top box was designed and tested to the International ISDB-T system and considered the adoption of solutions that would provide accessible services in digital television in the simplest digital television receiver. The accessible set-top box was evaluated regarding the processing and memory requirements impacts to provide the features for accessible services. The work presents also the access services bandwidth consumption analysis(1).
Resumo:
Nitrogen, phosphorus and potassium dose effect in the graft box of lemon tree (of the family Rutaceae) nutrition and production. The aim of the study was to evaluate the graft box of lemon tree (of the family Rutaceae) nutritional state and its components of growth in function of nitrogen, phosphorus and potassium dose by fertilization. The experimental outlining was entirely made casually in factorial scheme 3(3) + 1, being 3 factors (nitrogen, phosphorus and potassium - NPK), 3 doses and in evidence (without fertilization), with 3 repetitions. The experimental milt was constituted by two tubes of 2,8 cm diameter and 12,3 cm high with a graft box (Hipobioto) of lemon tree (of the family Rutaceae) in each tube. The doses used were constituted by doses of N (460; 920 e 18,10 mg dm(-3)), P (50; 100 e 200 mg dm(-3)) and K (395; 790 e 1580 mg dm(-3)). The fertilization with N and K was carried out by fertirrigations and the P added to the substract of Pinus rind and vermiculite before the seeding. when the plants were 133 days after the germination they were subdivided in radicular system and air part for the determinations of the dry matter mass, height, foliar area, stem diameter and contents of nutrients. The N, K and P doses of 920 mg dm(-3), 790 mg dm(-3), 100 mg dm(-3), respectively, were enough for the suitable development of the graft box of lemon tree (of the family Rutaceae) in tubes.
Resumo:
An experimental design optimization (Box-Behnken design, BBD) was used to develop a CE method for the simultaneous resolution of propranolol (Prop) and 4-hydroxypropranolol enantiomers and acetaminophen (internal standard). The method was optimized using an uncoated fused silica capillary, carboxymethyl-beta-cyclodextrin (CM-beta-CD) as chiral selector and triethylamine/phosphoric acid buffer in alkaline conditions. A BBD for four factors was selected to observe the effects of buffer electrolyte concentration, pH, CM-beta-CD concentration and voltage on separation responses. Each factor was studied at three levels: high, central and low, and three center points were added. The buffer electrolyte concentration ranged from 25 to 75 mM, the pH ranged from 8 to 9, the CM-beta-CD concentration ranged from 3.5 to 4.5%w/v, and the applied run voltage ranged from 14 to 20 W. The responses evaluated were resolution and migration time for the last peak. The obtained responses were processed by Minitab (R) to evaluate the significance of the effects and to find the optimum analysis conditions. The best results were obtained using 4%w/v CM-beta-CD in 25 mM triethylamine/H(3)PO(4) buffer at pH 9 as running electrolyte and 17 kV of voltage. Resolution values of 1.98 and 1.95 were obtained for Prop and 4-hydroxypropranolol enantiomers, respectively. The total analysis time was around of 15 min. The BBD showed to be an adequate design for the development of a CE method, resulting in a rapid and efficient optimization of the pH and concentration of the buffer, cyclodextrin concentration and applied voltage.
Resumo:
The dynamic response of dry masonry columns can be approximated with finite-difference equations. Continuum models follow by replacing the difference quotients of the discrete model by corresponding differential expressions. The mathematically simplest of these models is a one-dimensional Cosserat theory. Within the presented homogenization context, the Cosserat theory is obtained by making ad hoc assumptions regarding the relative importance of certain terms in the differential expansions. The quality of approximation of the various theories is tested by comparison of the dispersion relations for bending waves with the dispersion relation of the discrete theory. All theories coincide with differences of less than 1% for wave-length-block-height (L/h) ratios bigger than 2 pi. The theory based on systematic differential approximation remains accurate up to L/h = 3 and then diverges rapidly. The Cosserat model becomes increasingly inaccurate for L/h < 2 pi. However, in contrast to the systematic approximation, the wave speed remains finite. In conclusion, considering its relative simplicity, the Cosserat model appears to be the natural starting point for the development of continuum models for blocky structures.