957 resultados para Bovine Papillomavirus
Resumo:
Papillomaviruses have been reported to be very difficult to grow in cell culture. Also, there are no descriptions of cell cultures from lesions of bovine cutaneous papillomatosis, with identification of different bovine papilloma virus (BPV) DNA sequences. In the present report, we describe primary cell cultures from samples of cutaneous lesions (warts). We investigated the simultaneous presence of different BPV DNA sequences, comparing the original lesion to different passages of the cell cultures and to peripheral blood. BPV 1, 2 and 4 DNA sequences were found in lesion samples, and respective cell cultures and peripheral blood, supporting our previous hypothesis of the possible activity of these sequences in different samples and now also showing how they can be maintained in different passages of cell cultures.
Resumo:
Encapsidation of circular DNA by papillomavirus capsid protein was investigated in Cos-1 cells. Plasmids carrying both an SV40 origin of replication (or) and an E. coli on were introduced into Cos-1 cells by DNA transfection. PV capsid proteins were supplied in trans by recombinant vaccinia viruses. Pseudovirions were purified from infected cells and their packaged DNA was extracted and used to transform E. coil as an indication of packaging efficacy. VLPs assembled from BPV-1 L1 alone packaged little plasmid DNA, whereas VLPs assembled from BPV-1 L1+L2 packaged plasmid DNA at least 50 times more effectively. BPV-1 L1+L2 VLPs packaged a plasmid containing BPV-1 sequence 8.2 +/- 3.1 times more effectively than a plasmid without BW sequences. Using a series of plasmid constructs comprising a core BPV-1 sequence and spacer DNA it was demonstrated that BW VLPs could accommodate a maximum of about 10.2 kb of plasmid DNA, and that longer closed circular DNA was truncated to produce less dense virions with shorter plasmid sequences. The present study suggests that packaging of genome within PV virions involves interaction of L2 protein with specific DNA sequences, and demonstrates that PV pseudovirions have the potential to be used as DNA delivery vectors for plasmids of up to 10.2 kb. (C) 1998 Academic Press.
Resumo:
Transport of BPV-1 virus from the cell membrane to the nucleus was studied in vitro in CV-1 cells. At reduced temperature (4 degreesC). BPV-I binding to CV-1 cells was unaffected but there was no transport of virions across the cytosol. Electron microscopy showed BPV-I virions in association with microtubules in the cytoplasm, a finding confirmed by co-immunoprecipitation of L1 protein and tubulin. Internalization of virus was unimpaired in cells treated with the microtubule-depolymerizing drug nocodazole but virions were retained in cytoplasmic vesicles and not transported to the nucleus. We conclude that a microtubule transport mechanism in CV-1 cells moves intact BPV-1 virions from the cell surface to the nuclear membrane. (C) 2001 Academic Press.
Resumo:
To investigate the efficiency of encapsidation of plasmid by papillomavirus virus-like particles (PV VLPs), and the infectivity of the resultant PV pseudovirions, Cos-1 cells were transfected with an 8-kb plasmid incorporating a green fluorescent protein (GFP) reporter gene (pGSV), and infected with bovine PV (BPV-1) L1/L2 recombinant vaccinia virus to produce BPV1 pseudovirions. Approximately 1 in 1.5x10(4) of dense (1.35 g/ml) PV pseudovirions and 0.3 in 10(4) Of less-dense (1.29 g/ml) pseudovirions packaged an intact pGSV plasmid. The majority (>75%) of packaged plasmids contained deletions, and the deletions affected all tested genes. After exposure of Cos-1 cells to BPV-1 pseudovirions at an MOI of 40,000:1, 6% of cells expressed GFP giving a calculated efficiency of delivery of the pGSV plasmid, by pseudovirions which had packaged an intact plasmid, of approximately 5%. Plasmid delivery was not effected by purified pGSV plasmid, was blocked by antiserum against BPV-1, and was not blocked by DNase treatment of pseudovirions, confirming that delivery was mediated by DNA within the pseudovirion. We conclude that a major limitation to the use of PV pseudovirions as a gene delivery system is that intact plasmid DNA is not efficiently selected for packaging by VLPs in cell-based pseudovirions production systems.
Resumo:
Saccharomyces cerevisiae protoplasts exposed to bovine papillomavirus type 1 (BPV-1) virions demonstrated uptake of virions on electron microscopy. S. cerevisiae cells looked larger after exposure to BPV-1 virions, and cell wall regeneration was delayed. Southern blot hybridization of Hirt DNA from cells exposed to BPV-1 virions demonstrated BPV-1 DNA, which could be detected over 80 days of culture and at least 13 rounds of division. Two-dimensional gel analysis of Hirt DNA showed replicative intermediates, confirming that the BPV-1 genome was replicating within S. cerevisiae. Nicked circle, linear, and supercoiled BPV-1 DNA species were observed in Hirt DNA preparations from S. cerevisiae cells infected for over 50 days, and restriction digestion showed fragments hybridizing to BPV-1 in accord with the predicted restriction map for circular BPV-1 episomes. These data suggest that BPV-1 can infect S. cerevisiae and that BPV-1 episomes can replicate in the infected S. cerevisiae cells.
Resumo:
We recently demonstrated that Saccharomyces cerevisiae protoplasts can take up bovine papillomavirus type 1 (BPV1) virions and that viral episomal DNA is replicated after uptake. Here we demonstrate that BPV virus-like particles are assembled in infected S. cerevisiae cultures from newly synthesized capsid proteins and also package newly synthesized DNA, including full-length and truncated viral DNA and S. cerevisiae-derived DNA. Virus particles prepared in S. cerevisiae are able to convey packaged DNA to Cos1 cells and to transform C127 cells. Infectivity was blocked by antisera to BPV1 L1 but not antisera to BPV1 E4. We conclude that S. cerevisiae is permissive for the replication of BPV1 virus.
Resumo:
The bovine papillomavirus type 2 (BPV-2) involvement in the aetiology of chronic enzootic haematuria associated to bracken fern ingestion has been suggested for a long time. However, a few reports have shown the presence of the BPV-2 in urinary bladder tumors of cattle. The aim of this study was to investigate the presence of the BPV-2 infection in the urinary bladder of cattle with chronic enzootic haematuria in Brazilian cattle herds. Sixty-two urinary bladders were collected from adult cattle in beef herds from the north region of the state of Paraná, Brazil. According to clinical and pathological finds the specimens were distributed in three groups: the group A was constituted by 22 urinary bladders with macroscopic lesions collected at necropsy of cattle with clinical signs of chronic enzootic haematuria; the group B by 30 urinary bladders with macroscopic lesions collected in a slaughterhouse of cows coming from bracken fern-endemic geographical region; and the group C (control) by 10 urinary bladders without macroscopic lesions collected from asymptomatic cattle in a bracken fern-free geographical region. By a semi-nested polymerase chain reaction (PCR) assay, with an internal control, a fragment of the BPV-2 L1 gene with 386 bp length was amplified in 36 (58%) urinary bladder. The rate of BPV-2 positive urinary bladders was 50% (11/22) for group A, 80% (24/30) for group B, and 10% (1/10) for group C (control). The rate of the positive results found in groups A and B that included urinary bladder samples with macroscopic lesions was 67% (35/52) and the detection of the BPV-2 in both groups was significantly higher (P < 0.05) than in the control group. RFLP with Rsa I and Hae III enzymes evaluated the specificity of the BPV-2 amplicons. The PCR internal control that amplified a 626 bp fragment of the ND5 gene of the bovine mitochondrial genome was amplified in all analyzed samples and excluded false-negatives or invalid results in the semi-nested PCR. These results suggest the BPV-2 involvement in the chronic enzootic haematuria aetiology and open the perspective of the development of new strategies for the control of this disease that is the major cause of economical losses in beef herds from many Brazilian geographical regions.
Resumo:
The complete genome sequence of bovine papillomavirus 2 (BPV2) from Brazilian Amazon Region was determined using multiple-primed rolling circle amplification followed by Illumina sequencing. The genome is 7,947 bp long, with 45.9% GC content. It encodes seven early (E1, E2,E4, E5, E6,E7, and E8) and two late (L1 and L2) genes. The complete genome of a BPV2 can help in future studies since this BPV type is highly reported worldwide although the lack of complete genome sequences available.
Resumo:
Bovine papillomavirus type 8 (BPV-8) was first detected and described in teat warts as well as in healthy teat skin from cattle raised in Japan. The entire viral genome was sequenced in 2007. Additionally, a variant of BPV-8, BPV-8-EB, was also identified from papillomatous lesions of a European bison in Slovakia. In Brazil, despite the relatively common occurrence of BPV infections, the identification and determination of viral types present in cattle is still sporadic. The aim of this study is to report the occurrence of the recently described BPV-8 in Brazil. The virus was identified in a skin warts obtained from a beef cattle herd located in Parana state, southern Brazil. The papilloma had a macular, non-verrucous gross aspect and was located on the dorsal thorax of a cow. Polymerase chain reaction (PCR) was performed using generic primers for partial amplification of L1 gene. The obtained amplicon (480bp) was cloned and two selected clones were sequenced. The nucleotide sequence was compared to existing papillomaviral genomic sequences, identifying the virus as BPV type 8. This study represents the first report of BPV-8 occurrence in Brazil, what suggests its presence among Brazilian cattle.
Resumo:
REASONS FOR PERFORMING STUDY: Sarcoids are nonmetastasising, yet locally aggressive skin tumours that constitute the most frequent neoplasm in equids. Infection by bovine papillomaviruses types 1 and 2 (BPV-1, BPV-2) has been recognised as major causative factor in sarcoid pathogenesis, but a possible correlation of intralesional virus load with disease severity has not been established thus far. HYPOTHESIS: Given the pathogenic role of BPV-1 and BPV-2 in sarcoid disease, we suggest that intralesional viral DNA concentration may reflect the degree of affection. METHODS: Severity of disease was addressed by recording the tumour growth kinetics, lesion number and tumour type for 37 sarcoid-bearing horses and one donkey. Viral load was estimated via quantitative real-time PCR (qPCR) of the E2, E5, L1 and L2 genes from the BPV-1/-2 genome for one randomly selected lesion per horse and correlated with disease severity. RESULTS: Quantitative PCR against E2 identified viral DNA concentrations ranging from 0-556 copies/tumour cell. Of 16 horses affected by quiescent, slowly growing single tumours or multiple mild-type lesions, 15 showed a viral load up to 1.4 copies per cell. In stark contrast, all equids (22/22) bearing rapidly growing and/or multiple aggressive sarcoids had a viral load between 3 and 569 copies per cell. Consistent results were obtained with qPCR against E5, L1 and L2. CONCLUSIONS: While tumours of the same clinical type carried variable virus load, confirming that viral titre does not determine clinical appearance, we identified a highly significant correlation between intralesional viral load and disease severity. POTENTIAL RELEVANCE: The rapid determination of BPV viral load will give a reliable marker for disease severity and may also be considered when establishing a therapeutic strategy.
Resumo:
Bovine papillomaviruses of types 1 and 2 (BPV-1 and -2) chiefly contribute to equine sarcoid pathogenesis. However, the mode of virus transmission and the presence of latent infections are largely unknown. This study established a PCR protocol allowing detection of
Resumo:
Bovine papillomavirus type 1 (BPV-1) induces fibropapillomas in its natural host and can transform fibroblasts in culture. The viral genome is maintained as an episome within fibroblasts, which has allowed extensive genetic analyses of the viral functions required for DNA replication, gene expression, and transformation. Much less is known about BPV-1 gene expression and replication in bovine epithelial cells because the study of the complete viral life cycle requires an experimental system capable of generating a fully differentiated stratified bovine epithelium. Using a combination of organotypic raft cultures and xenografts on nude mice, we have developed a system in which BPV-1 can replicate and produce infectious viral particles. Organotypic cultures were established with bovine keratinocytes plated on a collagen raft containing BPV-1-transformed fibroblasts. These keratinocytes were infected with virus particles isolated from a bovine wart or were transfected with cloned BPV-1 DNA. Several days after the rafts were lifted to the air interface, they were grafted on nude mice. After 6–8 weeks, large xenografts were produced that exhibited a hyperplastic and hyperkeratotic epithelium overlying a large dermal fibroma. These lesions were strikingly similar to a fibropapilloma caused by BPV-1 in the natural host. Amplified viral DNA and capsid antigens were detected in the suprabasal cells of the epithelium. Moreover, infectious virus particles could be isolated from these lesions and quantitated by a focus formation assay on mouse cells in culture. Interestingly, analysis of grafts produced with infected and uninfected fibroblasts indicated that the fibroma component was not required for productive infection or morphological changes characteristic of papillomavirus-infected epithelium. This system will be a powerful tool for the genetic analysis of the roles of the viral gene products in the complete viral life cycle.
Resumo:
The bovine papillomavirus E5 protein is a 44-aa transmembrane protein that forms a stable complex with the cellular platelet-derived growth factor (PDGF) β receptor and induces constitutive tyrosine phosphorylation and activation of the receptor, resulting in cell transformation. The E5 protein does not resemble PDGF, but rather activates the receptor in a ligand-independent fashion, thus providing a unique system to examine activation of receptor tyrosine kinases. Here, we used a variety of approaches to explore the mechanism of receptor activation by the E5 protein. Chemical cross-linking experiments revealed that the E5 protein activated only a small fraction of the endogenous PDGF β receptor in transformed fibroblasts and suggested that this fraction was constitutively dimerized. Coimmunoprecipitation experiments using extracts of cells engineered to coexpress full-length and truncated PDGF β receptors confirmed that the E5 protein induced oligomerization of the receptor. Furthermore, in cells expressing the E5 protein, a kinase-active receptor was able to trans-phosphorylate a kinase-negative mutant receptor but was unable to catalyze intramolecular autophosphorylation. These results indicated that the E5 protein induced PDGF β receptor activation by forming a stable complex with the receptor, resulting in receptor dimerization and trans-phosphorylation.
Resumo:
The complete genome sequence of bovine papillomavirus 2 (BPV2) from Brazilian Amazon Region was determined using multiple-primed rolling circle amplification followed by Illumina sequencing. The genome is 7,947 bp long, with 45.9% GC content. It encodes seven early (E1, E2, E4, E5, E6, E7, and E8) and two late (L1 and L2) genes. The complete genome of a BPV2 can help in future studies since this BPV type is highly reported worldwide although the lack of complete genome sequences available.
Resumo:
To evaluate an antigen delivery system in which exogenous antigen can target the major histocompatibility complex (MHC) class I pathway, a single human papillomavirus (HPV) 16 E7 cytotoxic T lymphocyte (CTL) epitope and a single HIV gp160 CTL epitope were separately fused to the C-terminus or bovine papillomavirus 1 (BPV1) L1 sequence to form hybrid BPV1L1 VLPs. Mice immunized with these hybrid VLPs mounted strong CTL responses against the relevant target cells in the absence of any adjuvants. In addition, the CTL responses induced by immunization with BPV1L1/HPV16E7CTL VLPs protected mice against challenge with E7-transformed tumor cells. Furthermore, a high titer-specific antibody response against BPV1L1 VLPs was also induced, and this antiserum could inhibit papillomavirus-induced agglutination of mouse erythrocytes, suggesting that the antibody may recognize conformational determinates relevant to virus neutralization. These data demonstrate that hybrid BPV1L1 VLPs can be used as carriers to target antigenic epitopes to both the MHC class I and class II pathways, providing a promising strategy for the design of vaccines to prevent virus infection, with the potential to elicit therapeutic virus-specific CTL responses. (C) 1998 Academic Press.