940 resultados para Boundary element method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A hybrid technique to model two dimensional fracture problems which makes use of displacement discontinuity and direct boundary element method is presented. Direct boundary element method is used to model the finite domain of the body, while displacement discontinuity elements are utilized to represent the cracks. Thus the advantages of the component methods are effectively combined. This method has been implemented in a computer program and numerical results which show the accuracy of the present method are presented. The cases of bodies containing edge cracks as well as multiple cracks are considered. A direct method and an iterative technique are described. The present hybrid method is most suitable for modeling problems invoking crack propagation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new approach by making use of a hybrid method of using the displacement discontinuity element method and direct boundary element method to model concrete cracking by incorporating fictitious crack model. Fracture mechanics approach is followed using the Hillerborg's fictitious crack model. A boundary element based substructure method and a hybrid technique of using displacement discontinuity element method and direct boundary element method are compared in this paper. In order to represent the process zone ahead of the crack, closing forces are assumed to act in such a way that they obey a linear normal stress-crack opening displacement law. Plain concrete beams with and without initial crack under three-point loading were analyzed by both the methods. The numerical results obtained were shown to agree well with the results from existing finite element method. The model is capable of reproducing the whole range of load-deflection response including strain-softening and snap-back behavior as illustrated in the numerical examples. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, first a Fortran code is developed for three dimensional linear elastostatics using constant boundary elements; the code is based on a MATLAB code developed by the author earlier. Next, the code is parallelized using BLACS, MPI, and ScaLAPACK. Later, the parallelized code is used to demonstrate the usefulness of the Boundary Element Method (BEM) as applied to the realtime computational simulation of biological organs, while focusing on the speed and accuracy offered by BEM. A computer cluster is used in this part of the work. The commercial software package ANSYS is used to obtain the `exact' solution against which the solution from BEM is compared; analytical solutions, wherever available, are also used to establish the accuracy of BEM. A pig liver is the biological organ considered. Next, instead of the computer cluster, a Graphics Processing Unit (GPU) is used as the parallel hardware. Results indicate that BEM is an interesting choice for the simulation of biological organs. Although the use of BEM for the simulation of biological organs is not new, the results presented in the present study are not found elsewhere in the literature. Also, a serial MATLAB code, and both serial and parallel versions of a Fortran code, which can solve three dimensional (3D) linear elastostatic problems using constant boundary elements, are provided as supplementary files that can be freely downloaded.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, possibility of simulating biological organs in realtime using the Boundary Element Method (BEM) is investigated, with specific reference to the speed and the accuracy offered by BEM. First, a Graphics Processing Unit (GPU) is used to speed up the BEM computations to achieve the realtime performance. Next, instead of the GPU, a computer cluster is used. A pig liver is the biological organ considered. Results indicate that BEM is an interesting choice for the simulation of biological organs. Although the use of BEM for the simulation of biological organs is not new, the results presented in the present study are not found elsewhere in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, possibility of simulating biological organs in realtime using the Boundary Element Method (BEM) is investigated. Biological organs are assumed to follow linear elastostatic material behavior, and constant boundary element is the element type used. First, a Graphics Processing Unit (GPU) is used to speed up the BEM computations to achieve the realtime performance. Next, instead of the GPU, a computer cluster is used. Results indicate that BEM is fast enough to provide for realtime graphics if biological organs are assumed to follow linear elastostatic material behavior. Although the present work does not conduct any simulation using nonlinear material models, results from using the linear elastostatic material model imply that it would be difficult to obtain realtime performance if highly nonlinear material models that properly characterize biological organs are used. Although the use of BEM for the simulation of biological organs is not new, the results presented in the present study are not found elsewhere in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A set of hypersingular integral equations of a three-dimensional finite elastic solid with an embedded planar crack subjected to arbitrary loads is derived. Then a new numerical method for these equations is proposed by using the boundary element method combined with the finite-part integral method. According to the analytical theory of the hypersingular integral equations of planar crack problems, the square root models of the displacement discontinuities in elements near the crack front are applied, and thus the stress intensity factors can be directly calculated from these. Finally, the stress intensity factor solutions to several typical planar crack problems in a finite body are evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The two-dimensional problems concerning the interaction of linear water waves with cylinders of arbitrary shape in two-layer deep water are investigated by use of the Boundary Integral Equation method (BIEM). Simpler new expressions for the Green functions are derived, and verified by comparison of results obtained by BIEM with these by an analytical method. Examined are the radiation and scattering of linear waves by two typical configurations of cylinders in two-layer deep water. Hydrodynamic behaviors including hydrodynamic coefficients, wave forces, reflection and transmission coefficients and energies are analyzed in detail, and some interesting physical phenomena are observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical analysis of galvanic corrosion of hot-dip galvanized steel immersed in seawater was presented. The analysis was based on the boundary element methods (BEMs) coupled with Newton-Raphson iterative technique to treat the nonlinear boundary conditions, which were determined by the experimental polarization curves. Results showed that galvanic current density concentrates on the boundary of steel substrate and zinc coating, and the sacrificial protection of zinc coating to steel substrate results in overprotection of steel cathode. Not only oxygen reduction but also hydrogen reduction could occur as cathode reactions, which probably led up to the adsorption and absorption of hydrogen atoms. Flat galvanized steel tensile sample shows a brittle behavior similar to hydrogen embrittlement according to the SSRT (show strain rate test) in seawater.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solution process for diffusion problems usually involves the time development separately from the space solution. A finite difference algorithm in time requires a sequential time development in which all previous values must be determined prior to the current value. The Stehfest Laplace transform algorithm, however, allows time solutions without the knowledge of prior values. It is of interest to be able to develop a time-domain decomposition suitable for implementation in a parallel environment. One such possibility is to use the Laplace transform to develop coarse-grained solutions which act as the initial values for a set of fine-grained solutions. The independence of the Laplace transform solutions means that we do indeed have a time-domain decomposition process. Any suitable time solver can be used for the fine-grained solution. To illustrate the technique we shall use an Euler solver in time together with the dual reciprocity boundary element method for the space solution

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we consider the problem of time-harmonic acoustic scattering in two dimensions by convex polygons. Standard boundary or finite element methods for acoustic scattering problems have a computational cost that grows at least linearly as a function of the frequency of the incident wave. Here we present a novel Galerkin boundary element method, which uses an approximation space consisting of the products of plane waves with piecewise polynomials supported on a graded mesh, with smaller elements closer to the corners of the polygon. We prove that the best approximation from the approximation space requires a number of degrees of freedom to achieve a prescribed level of accuracy that grows only logarithmically as a function of the frequency. Numerical results demonstrate the same logarithmic dependence on the frequency for the Galerkin method solution. Our boundary element method is a discretization of a well-known second kind combined-layer-potential integral equation. We provide a proof that this equation and its adjoint are well-posed and equivalent to the boundary value problem in a Sobolev space setting for general Lipschitz domains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we consider the impedance boundary value problem for the Helmholtz equation in a half-plane with piecewise constant boundary data, a problem which models, for example, outdoor sound propagation over inhomogeneous. at terrain. To achieve good approximation at high frequencies with a relatively low number of degrees of freedom, we propose a novel Galerkin boundary element method, using a graded mesh with smaller elements adjacent to discontinuities in impedance and a special set of basis functions so that, on each element, the approximation space contains polynomials ( of degree.) multiplied by traces of plane waves on the boundary. We prove stability and convergence and show that the error in computing the total acoustic field is O( N-(v+1) log(1/2) N), where the number of degrees of freedom is proportional to N logN. This error estimate is independent of the wavenumber, and thus the number of degrees of freedom required to achieve a prescribed level of accuracy does not increase as the wavenumber tends to infinity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we show stability and convergence for a novel Galerkin boundary element method approach to the impedance boundary value problem for the Helmholtz equation in a half-plane with piecewise constant boundary data. This problem models, for example, outdoor sound propagation over inhomogeneous flat terrain. To achieve a good approximation with a relatively low number of degrees of freedom we employ a graded mesh with smaller elements adjacent to discontinuities in impedance, and a special set of basis functions for the Galerkin method so that, on each element, the approximation space consists of polynomials (of degree $\nu$) multiplied by traces of plane waves on the boundary. In the case where the impedance is constant outside an interval $[a,b]$, which only requires the discretization of $[a,b]$, we show theoretically and experimentally that the $L_2$ error in computing the acoustic field on $[a,b]$ is ${\cal O}(\log^{\nu+3/2}|k(b-a)| M^{-(\nu+1)})$, where $M$ is the number of degrees of freedom and $k$ is the wavenumber. This indicates that the proposed method is especially commendable for large intervals or a high wavenumber. In a final section we sketch how the same methodology extends to more general scattering problems.