855 resultados para Bootstrap Methodology


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Publicado em "AIP Conference Proceedings", Vol. 1648

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Emerging markets have received wide attention from investors around the globe because of their return potential and risk diversification. This research examines the selection and timing performance of Canadian mutual funds which invest in fixed-income and equity securities in emerging markets. We use (un)conditional two- and five-factor benchmark models that accommodate the dynamics of returns in emerging markets. We also adopt the cross-sectional bootstrap methodology to distinguish between ‘skill’ and ‘luck’ for individual funds. All the tests are conducted using a comprehensive data set of bond and equity emerging funds over the period of 1989-2011. The risk-adjusted measures of performance are estimated using the least squares method with the Newey-West adjustment for standard errors that are robust to conditional heteroskedasticity and autocorrelation. The performance statistics of the emerging funds before (after) management-related costs are insignificantly positive (significantly negative). They are sensitive to the chosen benchmark model and conditional information improves selection performance. The timing statistics are largely insignificant throughout the sample period and are not sensitive to the benchmark model. Evidence of timing and selecting abilities is obtained in a small number of funds which is not sensitive to the fees structure. We also find evidence that a majority of individual funds provide zero (very few provide positive) abnormal return before fees and a significantly negative return after fees. At the negative end of the tail of performance distribution, our resampling tests fail to reject the role of bad luck in the poor performance of funds and we conclude that most of them are merely ‘unlucky’.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The attached file is created with Scientific Workplace Latex

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper offers a productivity growth estimate for electric energy commercialization firms in Colombia, using a non-parametric Malmquist bootstrap methodology. The estimation and methodology serve two main purposes. First, in Colombia Commercialization firms are subject to a price-cap regulation scheme, a non-common arrangement in the international experience for this part of the industry. Therefore the paper’s result suggest an estimate of the productivity factor to be used by the regulator, not only in Colombia but in other countries where commercialization is a growing part of the industry (renewable energy, for instance). Second, because of poor data collection from regulators and firms themselves, regulation based on a single estimation of productivity seems inappropriate and error-prone. The nonparametric Malmquist bootstrap estimation allows an assessment of the result in contrast to a single one estimation. This would open an opportunity for the regulator to adopt a narrower and more accurate productivity estimation or override an implausible result and impose a productivity factor in the price-cap to foster the development of the industry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study uses a bootstrap methodology to explicitly distinguish between skill and luck for 80 Real Estate Investment Trust Mutual Funds in the period January 1995 to May 2008. The methodology successfully captures non-normality in the idiosyncratic risk of the funds. Using unconditional, beta conditional and alpha-beta conditional estimation models, the results indicate that all but one fund demonstrates poor skill. Tests of robustness show that this finding is largely invariant to REIT market conditions and maturity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, we verify the existence of predictability in the Brazilian equity market. Unlike other studies in the same sense, which evaluate original series for each stock, we evaluate synthetic series created on the basis of linear models of stocks. Following Burgess (1999), we use the “stepwise regression” model for the formation of models of each stock. We then use the variance ratio profile together with a Monte Carlo simulation for the selection of models with potential predictability. Unlike Burgess (1999), we carry out White’s Reality Check (2000) in order to verify the existence of positive returns for the period outside the sample. We use the strategies proposed by Sullivan, Timmermann & White (1999) and Hsu & Kuan (2005) amounting to 26,410 simulated strategies. Finally, using the bootstrap methodology, with 1,000 simulations, we find strong evidence of predictability in the models, including transaction costs.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optimization with stochastic algorithms has become a relevant research field. Due to its stochastic nature, its assessment is not straightforward and involves integrating accuracy and precision. Performance profiles for the mean do not show the trade-off between accuracy and precision, and parametric stochastic profiles require strong distributional assumptions and are limited to the mean performance for a large number of runs. In this work, bootstrap performance profiles are used to compare stochastic algorithms for different statistics. This technique allows the estimation of the sampling distribution of almost any statistic even with small samples. Multiple comparison profiles are presented for more than two algorithms. The advantages and drawbacks of each assessment methodology are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study analyzes the linear relationship between climate variables and milk components in Iran by applying bootstrapping to include and assess the uncertainty. The climate parameters, Temperature Humidity Index (THI) and Equivalent Temperature Index (ETI) are computed from the NASA-Modern Era Retrospective-Analysis for Research and Applications (NASA-MERRA) reanalysis (2002–2010). Milk data for fat, protein (measured on fresh matter bases), and milk yield are taken from 936,227 milk records for the same period, using cows fed by natural pasture from April to September. Confidence intervals for the regression model are calculated using the bootstrap technique. This method is applied to the original times series, generating statistically equivalent surrogate samples. As a result, despite the short time data and the related uncertainties, an interesting behavior of the relationships between milk compound and the climate parameters is visible. During spring only, a weak dependency of milk yield and climate variations is obvious, while fat and protein concentrations show reasonable correlations. In summer, milk yield shows a similar level of relationship with ETI, but not with temperature and THI. We suggest this methodology for studies in the field of the impacts of climate change and agriculture, also environment and food with short-term data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantitative palaeoclimate reconstructions are widely used to evaluate climatemodel performance. Here, as part of an effort to provide such a data set for Australia, we examine the impact of analytical decisions and sampling assumptions on modern-analogue reconstructions using a continent-wide pollen data set. There is a high degree of correlation between temperature variables in the modern climate of Australia, but there is sufficient orthogonality in the variations of precipitation, summer and winter temperature and plant–available moisture to allow independent reconstructions of these four variables to be made. The method of analogue selection does not affect the reconstructions, although bootstrap resampling provides a more reliable technique for obtaining robust measures of uncertainty. The number of analogues used affects the quality of the reconstructions: the most robust reconstructions are obtained using 5 analogues. The quality of reconstructions based on post-1850 CE pollen samples differ little from those using samples from between 1450 and 1849 CE, showing that European post settlement modification of vegetation has no impact on the fidelity of the reconstructions although it substantially increases the availability of potential analogues. Reconstructions based on core top samples are more realistic than those using surface samples, but only using core top samples would substantially reduce the number of available analogues and therefore increases the uncertainty of the reconstructions. Spatial and/or temporal averaging of pollen assemblages prior to analysis negatively affects the subsequent reconstructions for some variables and increases the associated uncertainties. In addition, the quality of the reconstructions is affected by the degree of spatial smoothing of the original climate data, with the best reconstructions obtained using climate data froma 0.5° resolution grid, which corresponds to the typical size of the pollen catchment. This study provides a methodology that can be used to provide reliable palaeoclimate reconstructions for Australia, which will fill in a major gap in the data sets used to evaluate climate models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work develops a new methodology in order to discriminate models for interval-censored data based on bootstrap residual simulation by observing the deviance difference from one model in relation to another, according to Hinde (1992). Generally, this sort of data can generate a large number of tied observations and, in this case, survival time can be regarded as discrete. Therefore, the Cox proportional hazards model for grouped data (Prentice & Gloeckler, 1978) and the logistic model (Lawless, 1982) can befitted by means of generalized linear models. Whitehead (1989) considered censoring to be an indicative variable with a binomial distribution and fitted the Cox proportional hazards model using complementary log-log as a link function. In addition, a logistic model can be fitted using logit as a link function. The proposed methodology arises as an alternative to the score tests developed by Colosimo et al. (2000), where such models can be obtained for discrete binary data as particular cases from the Aranda-Ordaz distribution asymmetric family. These tests are thus developed with a basis on link functions to generate such a fit. The example that motivates this study was the dataset from an experiment carried out on a flax cultivar planted on four substrata susceptible to the pathogen Fusarium oxysoprum. The response variable, which is the time until blighting, was observed in intervals during 52 days. The results were compared with the model fit and the AIC values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Industrial recurrent event data where an event of interest can be observed more than once in a single sample unit are presented in several areas, such as engineering, manufacturing and industrial reliability. Such type of data provide information about the number of events, time to their occurrence and also their costs. Nelson (1995) presents a methodology to obtain asymptotic confidence intervals for the cost and the number of cumulative recurrent events. Although this is a standard procedure, it can not perform well in some situations, in particular when the sample size available is small. In this context, computer-intensive methods such as bootstrap can be used to construct confidence intervals. In this paper, we propose a technique based on the bootstrap method to have interval estimates for the cost and the number of cumulative events. One of the advantages of the proposed methodology is the possibility for its application in several areas and its easy computational implementation. In addition, it can be a better alternative than asymptotic-based methods to calculate confidence intervals, according to some Monte Carlo simulations. An example from the engineering area illustrates the methodology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We perform a review of Web Mining techniques and we describe a Bootstrap Statistics methodology applied to pattern model classifier optimization and verification for Supervised Learning for Tour-Guide Robot knowledge repository management. It is virtually impossible to test thoroughly Web Page Classifiers and many other Internet Applications with pure empirical data, due to the need for human intervention to generate training sets and test sets. We propose using the computer-based Bootstrap paradigm to design a test environment where they are checked with better reliability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Response surface methodology based on Box-Behnken (BBD) design was successfully applied to the optimization in the operating conditions of the electrochemical oxidation of sanitary landfill leachate aimed for making this method feasible for scale up. Landfill leachate was treated in continuous batch-recirculation system, where a dimensional stable anode (DSA(©)) coated with Ti/TiO2 and RuO2 film oxide were used. The effects of three variables, current density (milliampere per square centimeter), time of treatment (minutes), and supporting electrolyte dosage (moles per liter) upon the total organic carbon removal were evaluated. Optimized conditions were obtained for the highest desirability at 244.11 mA/cm(2), 41.78 min, and 0.07 mol/L of NaCl and 242.84 mA/cm(2), 37.07 min, and 0.07 mol/L of Na2SO4. Under the optimal conditions, 54.99 % of chemical oxygen demand (COD) and 71.07 ammonia nitrogen (NH3-N) removal was achieved with NaCl and 45.50 of COD and 62.13 NH3-N with Na2SO4. A new kinetic model predicted obtained from the relation between BBD and the kinetic model was suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Didanosine-loaded chitosan microspheres were developed applying a surface-response methodology and using a modified Maximum Likelihood Classification. The operational conditions were optimized with the aim of maintaining the active form of didanosine (ddI), which is sensitive to acid pH, and to develop a modified and mucoadhesive formulation. The loading of the drug within the chitosan microspheres was carried out by ionotropic gelation technique with sodium tripolyphosphate (TPP) as cross-linking agent and magnesium hydroxide (Mg(OH)2) to assure the stability of ddI. The optimization conditions were set using a surface-response methodology and applying the Maximum Likelihood Classification, where the initial chitosan concentration, TPP and ddI concentration were set as the independent variables. The maximum ddI-loaded in microspheres (i.e. 1433mg of ddI/g chitosan), was obtained with 2% (w/v) chitosan and 10% TPP. The microspheres depicted an average diameter of 11.42μm and ddI was gradually released during 2h in simulated enteric fluid.