Improving web learning through model optimization using bootstrap for a tour-guide robot


Autoria(s): León, Rafael; Rainer Granados, José Javier; Rojo, José Manuel; Galán López, Ramón
Data(s)

01/09/2012

Resumo

We perform a review of Web Mining techniques and we describe a Bootstrap Statistics methodology applied to pattern model classifier optimization and verification for Supervised Learning for Tour-Guide Robot knowledge repository management. It is virtually impossible to test thoroughly Web Page Classifiers and many other Internet Applications with pure empirical data, due to the need for human intervention to generate training sets and test sets. We propose using the computer-based Bootstrap paradigm to design a test environment where they are checked with better reliability.

Formato

application/pdf

Identificador

http://oa.upm.es/16361/

Idioma(s)

eng

Publicador

E.T.S.I. Industriales (UPM)

Relação

http://oa.upm.es/16361/1/INVE_MEM_2012_133414.pdf

http://www.ijimai.org/journal/node/273

info:eu-repo/semantics/altIdentifier/doi/10.9781/ijimai.2012.162

Direitos

http://creativecommons.org/licenses/by-nc-nd/3.0/es/

info:eu-repo/semantics/openAccess

Fonte

International Journal of Artificial Intelligence and Interactive Multimedia, ISSN 1989-1660, 2012-09, Vol. 1, No. 6

Palavras-Chave #Robótica e Informática Industrial #Educación
Tipo

info:eu-repo/semantics/article

Artículo

PeerReviewed