994 resultados para Bone diseases


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Considerable progress has been achieved in recent years in treating children affected by bone diseases. Advances in the understanding of the molecular pathophysiology of genetic bone diseases have led to the development of enzyme replacement therapies for various lysosomal storage diseases, following the breakthrough initiated in treating Gaucher disease. Clinical studies are underway with tailored molecules correcting bone fragility and alleviating chronic bone pain and other manifestations of hypophosphatasia, or promoting growth of long bones in achondroplasia patients. We further report our very encouraging experience with intravenous bisphosphonate treatment in children suffering from secondary osteopenia and the high prevalence of calcium and vitamin D deficits in these severely disabled children.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During their lifetime, 20% of men will suffer from a fracture secondary to osteoporosis, and morbidity and mortality of a hip fracture in men are more severe than in women. Despite these facts, there are only few studies on osteoporosis in men. Hyopgonadism is a known risk factor for bone mineral density decrease. Hypogonadism can be found in patients diagnosed with prostate cancer who are receiving androgen deprivation therapy, but can also be discovered in patients with male infertility or erectile dysfunction. Urologists have central role in men's health aftercare, and therefore have key role in the screening and in the multidisciplinary treatment of osteoporosis and osteopenia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One to two percent of all children are born with a developmental disorder requiring pediatric hospital admissions. For many such syndromes, the molecular pathogenesis remains poorly characterized. Parallel developmental disorders in other species could provide complementary models for human rare diseases by uncovering new candidate genes, improving the understanding of the molecular mechanisms and opening possibilities for therapeutic trials. We performed various experiments, e.g. combined genome-wide association and next generation sequencing, to investigate the clinico-pathological features and genetic causes of three developmental syndromes in dogs, including craniomandibular osteopathy (CMO), a previously undescribed skeletal syndrome, and dental hypomineralization, for which we identified pathogenic variants in the canine SLC37A2 (truncating splicing enhancer variant), SCARF2 (truncating 2-bp deletion) and FAM20C (missense variant) genes, respectively. CMO is a clinical equivalent to an infantile cortical hyperostosis (Caffey disease), for which SLC37A2 is a new candidate gene. SLC37A2 is a poorly characterized member of a glucose-phosphate transporter family without previous disease associations. It is expressed in many tissues, including cells of the macrophage lineage, e.g. osteoclasts, and suggests a disease mechanism, in which an impaired glucose homeostasis in osteoclasts compromises their function in the developing bone, leading to hyperostosis. Mutations in SCARF2 and FAM20C have been associated with the human van den Ende-Gupta and Raine syndromes that include numerous features similar to the affected dogs. Given the growing interest in the molecular characterization and treatment of human rare diseases, our study presents three novel physiologically relevant models for further research and therapy approaches, while providing the molecular identity for the canine conditions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

There are many limitations to image acquisition, using conventional radiography, of the temporomandibular joint (TMJ) region. The Computed Tomography (CT) scan is a better option, due to its higher accuracy, for purposes of diagnosis, surgical planning and treatment of bone injuries. The aim of the present study was to analyze two protocols of cone beam computed tomography for the evaluation of simulated mandibular condyle bone lesions. Spherical lesions were simulated in 30 dry mandibular condyles, using dentist drills and drill bits sizes 1, 3 and 6. Each of the mandibular condyles was submitted to cone beam computed tomography (CBCT) using two protocols: 1) axial, coronal and sagittal multiplanar reconstruction (MPR); and 2) sagittal plus coronal slices throughout the longitudinal axis of the mandibular condyles. For these protocols, 2 observers analyzed the CBCT images independently, regarding the presence or not of injuries. Only one of the observers, however, performed on 2 different occasions. The results were compared to the gold standard, evaluating the percentage of agreement, degree of accuracy of CBCT protocols and observers' examination. The z test was used for the statistical analysis. The results showed there were no statistically significant differences between the 2 protocols. There was greater difficulty in the assessment of small-size simulated lesions (drill # 1). From the results of this study, it can be concluded that CBCT is an accurate tool for analyzing mandibular condyle bone lesions, with the MPR protocol showing slightly better results than the sagittal plus coronal slices throughout the longitudinal axis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bone deposition and bone resorption are ongoing dynamic processes, constituting bone remodeling. Some bone tumors, such as osteosarcoma (OS), stimulate focal bone deposition. OS is the most common primary bone tumor in children and young adults. A complex network of genes regulates bone remodeling and alterations in its expression levels can influence the genesis and progression of bone diseases, including OS. We hypothesized that the expression profiles of bone remodeling regulator genes would be correlated with OS biology and clinical features. We used real-time PCR to evaluate the mRNA levels of the tartrate-resistant acid phosphatase (ACP5), colony stimulating factor-1 (CSF1R), bone morphogenetic protein 7 (BMP7), collagen, type XI, alpha 2 (COL11A2), and protein tyrosine phosphatases zeta 1 (PTPRZ1) genes, in 30 OS tumor samples and correlated with clinical and histological data. All genes analyzed, except CSF1R, were differentially expressed when compared with normal bone expression profiles. In our results, OS patients with high levels of COL11A2 mRNA showed worse overall (p = 0.041) and event free survival (p = 0.037). Also, a trend for better overall survival was observed in patients with samples showing higher expression of BMP7 (p =0.067). COL11A2 overexpression and BMP7 underexpression could collaborate to OS tumor growth, through its central role in bone remodeling process. (C) 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:1142-1148, 2010

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: The aim of this study was to quantitatively evaluate and qualitatively describe autogenous bone graft healing with or without an expanded polytetrafluoroethylene (e-PTFE) membrane in ovariectornized rats. Materials and Methods: Eighty Wistar rats, weighing approximately 300 g each, were used. A graft was obtained from the parietal bone and fixed to the sidewall of each animal`s left mandibular ramus. The animals were randomly divided into four experimental groups (n = 20 in each group): group 1, sham operated and autogenous bone graft only- group 2, sham operated and autogenous bone graft covered by e-PTFE membrane; group 3, ovariectornized (OVX) and autogenous bone graft only- group 4, OVX and autogenous bone graft covered by e-PTFE membrane. The animals were sacrificed at five different time points: immediately after grafting or at 7, 21, 45, or 60 days after grafting. Histologic examination and morphometric measurement of the sections were performed, and values were submitted to statistical analyses. Results: Both groups (sham and OVX) experienced loss of the original graft volume when it was not covered by the membrane, whereas use of the membrane resulted in additional bone formation beyond the edges of the graft and under the membrane. Histologic analysis showed integration of the grafts in all animals, although a larger number of marrow spaces was found in OVX groups. Conclusions: Association of bone graft with an e-PTFE membrane resulted in maintenance of its original volume as well as formation of new bone that filled the space under the membrane. Osteopenia did not influence bone graft repair, regardless of whether or not it was associated with e-PTFE membrane, but descriptive histologic analysis showed larger numbers of marrow spaces in the bone graft and receptor bed and formation of new bone in the OVX animals. INT J ORAL MAXILLOFAC IMPLANTS 2009;24:1074-1082

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: The aim was to evaluate the presence of metabolic bone disease (MBD) in patients with Crohn’s disease (CD) and to identify potential etiologic factors. Methods: The case–control study included 99 patients with CD and 56 controls with a similar age and gender distribution. Both groups had dual-energy x-ray absorptionmetry and a nutritional evaluation. Single nucleotide polymorphisms at the IL1, TNF-a, LTa, and IL-6 genes were analyzed in patients only. Statistical analysis was performed using SPSS software. Results: The prevalence of MBD was significantly higher in patients (P ¼ 0.006). CD patients with osteoporosis were older (P < 0.005), small bowel involvement and surgical resections were more frequent (P < 0.005), they more often exhibited a penetrating or stricturing phenotype (P < 0.05), duration of disease over 15 years (P < 0.005), and body mass index (BMI) under 18.5 kg/m2 (P < 0.01) were more often found. No association was found with steroid use. Patients with a Z-score < 2.0 more frequently had chronic active disease (P < 0.05). With regard to diet, low vitamin K intake was more frequent (P ¼ 0.03) and intake of total, monounsaturated, and polyunsaturated fat was higher in patients with Z-score < 2.0 (P < 0.05). With respect to genetics, carriage of the polymorphic allele for LTa252 A/G was associated with a higher risk of osteoporosis (P ¼ 0.02). Regression analysis showed that age over 40 years, chronic active disease, and previous colonic resections were independently associated with the risk of developing MBD. Conclusions: The prevalence of MBD was significantly higher in CD patients. Besides the usual risk factors, we observed that factors related to chronic active and long-lasting disease increased the risk of MBD.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

There is a growing socioeconomic recognition that clinical bone diseases such as bone infections, bone tumors and osteoporotic bone loss mainly associated with ageing, are major issues in today0s society. SPARC (secreted protein, acidic and rich in cysteine), a matricellular glycoprotein, may be a promising therapeutic target for preventing or treating bone‐related diseases. In fact, SPARC is associated with tissue remodeling, repair, development, cell turnover, bone mineralization and may also participate in growth and progression of tumors, namely cancer‐related bone metastasis. Yet, the function of SPARC in such biological processes is poorly understood and controversial. The main objective of this work is to review the current knowledge related to the activity of SPARC in bone remodeling, tumorigenesis, and bone metastasis. Progress in understanding SPARC biology may provide novel strategies for bone regeneration and the development of anti‐angiogenic, anti‐proliferative, or counter‐adhesive treatments specifically against bone metastasis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work aims to design a synthetic construct that mimics the natural bone extracellular matrix through innovative approaches based on simultaneous type I collagen electrospinning and nanophased hydroxyapatite (nanoHA) electrospraying using non-denaturating conditions and non-toxic reagents. The morphological results, assessed using scanning electron microscopy and atomic force microscopy (AFM), showed a mesh of collagen nanofibers embedded with crystals of HA with fiber diameters within the nanometer range (30 nm), thus significantly lower than those reported in the literature, over 200 nm. The mechanical properties, assessed by nanoindentation using AFM, exhibited elastic moduli between 0.3 and 2 GPa. Fourier transformed infrared spectrometry confirmed the collagenous integrity as well as the presence of nanoHA in the composite. The network architecture allows cell access to both collagen nanofibers and HA crystals as in the natural bone environment. The inclusion of nanoHA agglomerates by electrospraying in type I collagen nanofibers improved the adhesion and metabolic activity of MC3T3-E1 osteoblasts. This new nanostructured collagen–nanoHA composite holds great potential for healing bone defects or as a functional membrane for guided bone tissue regeneration and in treating bone diseases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Between 1985 and 1990 we treated 11 large segmental bone defects (average 6.7 cm) in ten patients with the Ilizarov technique. Open fractures, type III according to Gustilo, represented the largest group (8 of 11 cases). The average delay before the Ilizarov technique was initiated was 8.9 months. The external fixator was usually maintained for 1 year. Bone regeneration was obtained in every case. Consolidation was not fulfilled with this technique in three cases. The complications observed were one refracture, four leg-length discrepancies (average 1.5 cm), and five axial deformities exceeding 5 degrees. No pin-track infection was observed. In our limited series of four type IIIC open fractures treated by the Ilizarov technique, no patients required amputation. The Ilizarov technique is particularly useful in the treatment of large bone defects, without major complications, especially if there is an adequate initial debridement.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Stem cell transplantation therapy using mesenchymal stem cells (MSCs) is considered a useful strategy. Although MSCs are commonly isolated by exploiting their plastic adherence, several studies have suggested that there are other populations of stem and/or osteoprogenitor cells which are removed from primary culture during media replacement. Therefore, we developed a three-dimensional (3D) culture system in which adherent and non-adherent stem cells are selected and expanded. Here, we described the characterization of 3D culture-derived cell populations in vitro and the capacity of these cells to differentiate into bone and/or cartilage tissue when placed inside of demineralized bone matrix (DBM) cylinders, implanted subcutaneously into the backs of rat for 2, 4 and 8 weeks. Our results demonstrates that 3D culture cells were a heterogeneous population of uncommitted cells that express pluripotent, hematopoietic, mesenchymal and endothelial specific markers in vitro and can undergo osteogenic differentiation in vivo.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bone remodeling is regulated by the two branches of the autonomic nervous system: the adrenergic and the cholinergic branches. Adrenergic activity favors bone loss, whereas cholinergic activity has been recently shown to favor bone mass accrual. In vitro studies have reported that cholinergic activity induces proliferation and differentiation of bone cells. In vivo studies have shown that the inhibition of cholinergic activity favors bone loss, whereas its stimulation favors bone mass accrual. Clinical studies have shown that bone density is associated with the function of many cholinergic-regulated tissues such as the hypothalamus, salivary glands, lacrimal glands and langerhans cells, suggesting a common mechanism of control. Altogether, these observations and linked findings are of great significance since they improve our understanding of bone physiology. These discoveries have been successfully used recently to investigate new promising therapies for bone diseases based on cholinergic stimulation. Here, we review the current understanding of the cholinergic activity and its association with bone health.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND/OBJECTIVES Aging enhances frequency of chronic diseases like cardiovascular diseases or periodontitis. Here we reproduced an age-dependent model of the periodontium, a fully physiological approach to periodontal conditions, to evaluate the impact of dietary fat type on gingival tissue of young (6 months old) and old (24 months old) rats. METHODS/FINDINGS Animals were fed life-long on diets based on monounsaturated fatty acids (MUFA) as virgin olive oil, n-6 polyunsaturated fatty acids (n-6PUFA), as sunflower oil, or n-3PUFA, as fish oil. Age-related alveolar bone loss was higher in n-6PUFA fed rats, probably as a consequence of the ablation of the cell capacity to adapt to aging. Gene expression analysis suggests that MUFA or n-3PUFA allowed mitochondria to maintain an adequate turnover through induction of biogenesis, autophagy and the antioxidant systems, and avoiding mitochondrial electron transport system alterations. CONCLUSIONS The main finding is that the enhanced alveolar bone loss associated to age may be targeted by an appropriate dietary treatment. The mechanisms involved in this phenomenon are related with an ablation of the cell capacity to adapt to aging. Thus, MUFA or n-3PUFA might allow mitochondrial maintaining turnover through biogenesis or autophagy. They might also be able to induce the corresponding antioxidant systems to counteract age-related oxidative stress, and do not inhibit mitochondrial electron transport chain. From the nutritional and clinical point of view, it is noteworthy that the potential treatments to attenuate alveolar bone loss (a feature of periodontal disease) associated to age could be similar to some of the proposed for the prevention and treatment of cardiovascular diseases, a group of pathologies recently associated with age-related periodontitis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bone is a physiologically dynamic tissue being constantly regenerated throughout life as a consequence of bone turnover by bone-resorbing osteoclasts and bone-forming osteoblasts. In certain bone diseases, such as osteoporosis, the imbalance in bone turnover leads to bone loss and increased fracture risk. Measurement of bone mineral density (BMD) predicts the risk of fracture, but also biochemical markers of bone metabolism have been suggested to be suitable for prediction of fractures and monitoring the efficacy of antiresorptive treatment. Tartrate-resistant acid phosphatase 5b (TRACP 5b) is an enzyme released from osteoclasts into the circulation, from where it can be detected kinetically or immunologically. Conventional assays for serum total TRACP were spectrophotometric and suffered from interference by other acid phosphatases and non-osteoclastic TRACP 5a isoform. Our aim was to develop novel immunoassays for osteoclastic TRACP 5b. Serum TRACP 5b levels were elevated in individuals with high bone turnover, such as children, postmenopausal women, patients with osteoporosis, Paget’s disease and breast cancer patients with bone metastases. As expected, hormone replacement therapy (HRT) in postmenopausal women decreased the levels of serum TRACP 5b. Surprisingly, the highest TRACP 5b levels were observed in individuals with rare autosomal dominant osteopetrosis type II (ADO2), which is characterized by high BMD and fracture risk with simultaneously elevated levels of deficient osteoclasts. In ADO2 patients, elevated levels of serum TRACP 5b were associated with high fracture frequency. It is likely that serum TRACP 5b reflects the number of inactive osteoclasts in ADO2. Similar results supporting the hypothesis that TRACP 5b would reflect the number of osteoclasts instead of their activity were observed with cultured osteoclasts and in animal models. Novel TRACP 5b immunoassays may prove to be of value either as independent or combinatory tools with other bone metabolic markers and BMD measurements in clinical practice and bone research.