976 resultados para Bone Regeneration
Resumo:
Tissue engineering allows the design of functionally active cells within supportive bio-scaffolds to promote the development of new tissues such as cartilage and bone for the restoration of pathologically altered tissues. However, all bone tissue engineering applications are limited by a shortage of stem cells. The adult bone marrow stroma contains a subset of nonhematopoietic cells referred to as bone marrow mesenchymal stem cells (BMSCs). BMSCs are of interest because they are easily isolated from a small aspirate of bone marrow and readily generate single- cell-derived colonies. These cells have the capacity to undergo extensive replication in an undifferentiated state ex vivo. In addition, BMSCs have the potential to develop either in vitro or in vivo into distinct mesenchymal tissues, including bone, cartilage, fat, tendon, muscle, and marrow stroma. Thus, BMSCs are an attractive cell source for tissue engineering approaches. However, BMSCs are not homo- geneous and the quantity of stem cells decreases in the bone marrow in aged population. A sequential loss of lineage differentiation potential has been found in the mixed culture of bone marrow stromal cells due to a heterogenous popu- lation. Therefore, a number of studies have proposed that homogenous bone marrow stem cells can be generated from clonal culture of bone marrow cells and that BMSC clones have the greatest potential for the application of bone regeneration in vivo
Resumo:
Objective: Regeneration of osseous defects by tissue-engineering or cell delivery approach provides a novel means of treatment utilizing cell biology, materials sciences, and molecular biology. The concept of in vitro explanted mesenchymal stem cells (MSCs) with an ability to induce new bone formation has been demonstrated in some small animal models. However, contradictory results have been reported regarding the regenerative capacity of MSCs after ex vivo expansion due to the lack of the understanding of microenvironment for MSC differentiation in vivo. ----- ----- Methods: In our laboratory tissue-derived and bone marrow-derived MSCs have been investigated in their osteogenesis. Cell morphology and proliferation were studied by microscopy, confocal microscopy, FACS and cell counting. Cell differentiation and matrix formation were analysed by matrix staining, quantitative PCR, and immunohistochemistry. A SCID skull defect model was used for cell transplantation studies.----- ----- Results: It was noted that tissue-derived and bone marrow-derived MSCs showed similar characteristics in cell surface marker expression, mesenchymal lineage differentiation potential, and cell population doubling. MSCs from both sources could initiate new bone formation in bone defects after delivery into a critical size defects. The bone forming cells were from both transplanted cells and endogenous cells from the host. Interestingly, the majority of in vitro osteogenic differentiated cells did not form new bone directly even though mineralized matrix was synthesized in vitro by MSCs. Furthermore, no new bone formation was detected when MSCs were transplanted subcutaneously.----- ----- Conclusion: This study unveiled the limitations of MSC delivery in bone regeneration and proposed that in vivo microenvironment needs to be optimized for MSC delivery in osteogenesis.
Resumo:
Nanotechnology is a vigorous research area and one of its important applications is in biomedical sciences. Among biomedical applications, targeted drug delivery is one of the most extensively studied subjects. Nanostructured particles and scaffolds have been widely studied for increasing treatment efficacy and specificity of present treatment approaches. Similarly, this technique has been used for treating bone diseases including bone regeneration. In this review, we have summarized and highlighted the recent advancement of nanostructured particles and scaffolds for the treatment of cancer bone metastasis, osteosarcoma, bone infections and inflammatory diseases, osteoarthritis, as well as for bone regeneration. Nanoparticles used to deliver deoxyribonucleic acid and ribonucleic acid molecules to specific bone sites for gene therapies are also included. The investigation of the implications of nanoparticles in bone diseases have just begun, and has already shown some promising potential. Further studies have to be conducted, aimed specifically at assessing targeted delivery and bioactive scaffolds to further improve their efficacy before they can be used clinically
Resumo:
Bioceramics play an important role in repairing and regenerating bone defects. Annually, more than 500,000 bone graft procedures are performed in the United states and approximately 2.2 million are conducted worldwide. The estimated cost of these procedures approaches $2.5billion per year. Around 60% of the bone graft substitutes available on the market involve bioceramics. It is reported that bioceramics in the world market increase by 9% per year. For this reason, the research of bioceramics has been one of the most active areas during, the past several years. Considering the significant importance of bioceramics, our goal was to compile this book to review the latest research advances in the field of bioceramics. The text also summarizes our work during the past 10 years in an effort to share innovative concepts, design of bioceramisc, and methods for material synthesis and drug delivery. We anticipate that this text will provide some useful information and guidance in the bioceramics field for biomedical engineering researchers and material scientists. Information on novel mesoporous bioactive glasses and silicate-based ceramics for bone regeneration and drug delivery are presented. Mesoporous bioactive glasses have shown multifunctional characteristics of bone regeneration and drug delivery due to their special mesopore structures,whereas silicated-based bioceramics, as typical third-generation biomaterials,possess significant osteostimulation properties. Silica nanospheres with a core-shell structure and specific properties for controllable drug delivery have been carefully reviewed-a variety of advanced synthetic strategies have been developed to construct functional mesoporous silica nanoparticles with a core-shell structure, including hollow, magnetic, or luminescent, and other multifunctional core-shell mesoporous silica nanoparticles. In addition, multifunctional drug delivery systems based on these nanoparticles have been designed and optimized to deliver the drugs into the targeted organs or cells,with a controllable release fashioned by virtue of various internal and external triggers. The novel 3D-printing technique to prepare advanced bioceramic scaffolds for bone tissue engineering applications has been highlighted, including the preparation, mechanical strength, and biological properties of 3D-printed porous scaffolds of calcium phosphate cement and silicate bioceramics. Three-dimensional printing techniques offer improved large-pore structure and mechanical strength. In addition , biomimetic preparation and controllable crystal growth as well as biomineralization of bioceramics are summarized, showing the latest research progress in this area. Finally, inorganic and organic composite materials are reviewed for bone regeneration and gene delivery. Bioactive inorganic and organic composite materials offer unique biological, electrical, and mechanical properties for designing excellent bone regeneration or gene delivery systems. It is our sincere hope that this book will updated the reader as to the research progress of bioceramics and their applications in bone repair and regeneration. It will be the best reward to all the contributors of this book if their efforts herein in some way help reader in any part of their study, research, and career development.
Resumo:
Here we fabricate and characterise bioactive composite scaffolds for bone tissue engineering applications. 45S5 Bioglass® (45S5) or strontium-substituted bioactive glass (SrBG) were incorporated into polycaprolactone (PCL) and fabricated into 3D bioactive composite scaffolds utilising additive manufacturing technology. We show that composite scaffolds (PCL/45S5 and PCL/SrBG) can be reproducibly manufactured with a scaffold morphology highly resembling that of PCL scaffolds. Additionally, micro-CT analysis reveals BG particles were homogeneously distributed throughout the scaffolds. Mechanical data suggested that PCL/45S5 and PCL/SrBG composite scaffolds have higher compressive Young’s modulus compared to PCL scaffolds at similar porosity (~75%). After 1 day in accelerated degradation conditions using 5M NaOH, PCL/SrBG, PCL/45S5 and PCL lost 48.6 ±3.8%, 12.1 ±1% and 1.6 ±1% of its original mass, respectively. In vitro studies were conducted using MC3T3 cells under normal and osteogenic conditions. All scaffolds were shown to be non-cytotoxic, and supported cell attachment and proliferation. Our results also indicate that the inclusion of bioactive glass (BG) promotes precipitation of calcium phosphate on the scaffold surfaces which leads to earlier cell differentiation and matrix mineralisation when compared to PCL scaffolds. However, as indicated by ALP activity, no significant difference in osteoblast differentiation was found between PCL/45S5 and PCL/SrBG scaffolds. These results suggest that PCL/45S5 and PCL/SrBG composite scaffold shows potential as a next generation bone scaffold.
Resumo:
Polycaprolactone (PCL) is a resorbable polymer used extensively in bone tissue engineering owing to good structural properties and processability. Strontium substituted bioactive glass (SrBG) has the ability to promote osteogenesis and may be incorporated into scaffolds intended for bone repair. Here we describe for the first time, the development of a PCL-SrBG composite scaffold incorporating 10% (weight) of SrBG particles into PCL bulk, produced by the technique of melt-electrospinning. We show that we are able to reproducibly manufacture composite scaffolds with an interconnected porous structure and, furthermore, these scaffolds were demonstrated to be non-cytotoxic in vitro. Ions present in the SrBG component were shown to dissolve into cell culture media and promoted precipitation of a calcium phosphate layer on the scaffold surface which in turn led to noticeably enhanced alkaline phosphatase activity in MC3T3-E1 cells compared to PLC-only scaffolds. These results suggest that melt-electrospun PCL-SrBG composite scaffolds show potential to become effective bone graft substitutes.
Resumo:
Bone defect treatments can be augmented by mesenchymal stem cell (MSC) based therapies. MSC interaction with the extracellular matrix (ECM) of the surrounding tissue regulates their functional behavior. Understanding of these specific regulatory mechanisms is essential for the therapeutic stimulation of MSC in vivo. However, these interactions are presently only partially understood. This study examined in parallel, for the first time, the effects on the functional behavior of MSCs of 13 ECM components from bone, cartilage and hematoma compared to a control protein, and hence draws conclusions for rational biomaterial design. ECM components specifically modulated MSC adhesion, migration, proliferation, and osteogenic differentiation, for example, fibronectin facilitated migration, adhesion, and proliferation, but not osteogenic differentiation, whereas fibrinogen enhanced adhesion and proliferation, but not migration. Subsequently, the integrin expression pattern of MSCs was determined and related to the cell behavior on specific ECM components. Finally, on this basis, peptide sequences are reported for the potential stimulation of MSC functions. Based on the results of this study, ECM component coatings could be designed to specifically guide cell functions.
Resumo:
The role of Bone Tissue Engineering in the field of Regenerative Medicine has been the topic of substantial research over the past two decades. Technological advances have improved orthopaedic implants and surgical techniques for bone reconstruction. However, improvements in surgical techniques to reconstruct bone have been limited by the paucity of autologous materials available and donor site morbidity. Recent advances in the development of biomaterials have provided attractive alternatives to bone grafting expanding the surgical options for restoring the form and function of injured bone. Specifically, novel bioactive (second generation) biomaterials have been developed that are characterised by controlled action and reaction to the host tissue environment, whilst exhibiting controlled chemical breakdown and resorption with an ultimate replacement by regenerating tissue. Future generations of biomaterials (third generation) are designed to be not only osteo- conductive but also osteoinductive, i.e. to stimulate regeneration of host tissues by combining tissue engineer- ing and in situ tissue regeneration methods with a focus on novel applications. These techniques will lead to novel possibilities for tissue regeneration and repair. At present, tissue engineered constructs that may find future use as bone grafts for complex skeletal defects, whether from post-traumatic, degenerative, neoplastic or congenital/developmental “origin” require osseous reconstruction to ensure structural and functional integrity. Engineering functional bone using combinations of cells, scaffolds and bioactive factors is a promising strategy and a particular feature for future development in the area of hybrid materials which are able to exhibit suitable biomimetic and mechanical properties. This review will discuss the state of the art in this field and what we can expect from future generations of bone regeneration concepts.
Resumo:
Background Today, finding an ideal biomaterial to treat the large bone defects, delayed unions and non-unions remains a challenge for orthopaedic surgeions and researchers. Several studies have been carried out on the subject of bone regeneration, each having its own advantages. The present study has been designed in vivo to evaluate the effects of cellular auto-transplantation of tail vertebrae on healing of experimental critical bone defect in a dog model. Methods Six indigenous breeds of dog with 32 ± 3.6 kg average weight from both sexes (5 males and 1 female) received bilateral critical-sized ulnar segmental defects. After determining the health condition, divided to 2 groups: The Group I were kept as control I (n = 1) while in Group II (experimental group; n = 5) bioactive bone implants were inserted. The defects were implanted with either autogeneic coccygeal bone grafts in dogs with 3-4 cm diaphyseal defects in the ulna. Defects were stabilized with internal plate fixation, and the control defects were not stabilized. Animals were euthanized at 16 weeks and analyzed by histopathology. Results Histological evaluation of this new bone at sixteen weeks postoperatively revealed primarily lamellar bone, with the formation of new cortices and normal-appearing marrow elements. And also reformation cortical compartment and reconstitution of marrow space were observed at the graft-host interface together with graft resorption and necrosis responses. Finally, our data were consistent with the osteoconducting function of the tail autograft. Conclusions Our results suggested that the tail vertebrae autograft seemed to be a new source of autogenous cortical bone in order to supporting segmental long bone defects in dogs. Furthermore, cellular autotransplantation was found to be a successful replacement for the tail vertebrae allograft bone at 3-4 cm segmental defects in the canine mid- ulna. Clinical application using graft expanders or bone autotransplantation should be used carefully and requires further investigation.
Resumo:
A perfectly plastic von Mises model is proposed to study the elastic-plastic behavior of a porous hierarchical scaffold used for bone regeneration. The proposed constitutive model is implemented in a finite element (FE) routine to obtain the stress-strain relationship of a uniaxially loaded cube of the scaffold, whose constituent is considered to be composed of cortical bone. The results agree well with experimental data for uniaxial loading case of a cancellous bone. We find that the unhomogenized stress distribution results in different mechanical properties from but still comparable to our previous theory. The scaffold is a promising candidate for bone regeneration.
Resumo:
Mesenchymal stem cells (MSCs) were demonstrated to exist within peripheral blood (PB) of several mammalian species including human, guinea pig, mice, rat, and rabbit. Whether or not the PB derived MSCs (PBMSCs) could enhance the regeneration of large bone defects have not been reported. In this study, rabbit MSCs were obtained from mononuclear cells (MNCs) cultures of both the PB and bone marrow (BM) origin. The number of PBMSCs was relatively lower, with the colony forming efficiency (CFE) ranging from 1.2-13 per million MNCs. Under specific inductive conditions, PBMSCs differentiated into osteoblasts, chondrocytes, and adipocytes, showing multi- differentiation ability similar to BMMSCs. Bilateral 20 mm critical-sized bone defects were created in the ulnae of twelve 6-month old New Zealand white rabbits. The defects were treated with allogenic PBMSCs/Skelite (porous calcium phosphate resorbable substitute), BMMSCs/Skelite, PBMNCs/Skelite, Skelite alone and left empty for 12 weeks. Bone regeneration was evaluated by serial radiography, peripheral quantitative computed tomography (pQCT), and histological examinations. The x-ray scores and the pQCT total bone mineral density in the PBMSCs/Skelite and BMMSCs/Skelite treated groups were significantly greater than those of the PBMNCs/Skelite and Skelite alone groups (p
Resumo:
This study investigated the feasibility of manufacturing hydroxyapatite (HA)-based scaffolds using 3D printing technology by incorporating different binding additives, such as maltodextrin and polyvinyl alcohol (PVOH), into the powder formulation. Different grades of PVOH were evaluated in terms of their impact on the printing quality. Results showed that scaffolds with high architectural accuracy in terms of the design and excellent green compressive strength were obtained when the PVOH (high viscosity) was used as the binding additive for HA.