977 resultados para Bone Matrix


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The repair of bone defects that result from periodontal diseases remains a clinical challenge for periodontal therapy. β-tricalcium phosphate (β-TCP) ceramics are biodegradable inorganic bone substitutes with inorganic components that are similar to those of bone. Demineralized bone matrix (DBM) is an acid-extracted organic matrix derived from bone sources that consists of the collagen and matrix proteins of bone. A few studies have documented the effects of DBM on the proliferation and osteogenic differentiation of human periodontal ligament cells (hPDLCs). The aim of the present study was to investigate the effects of inorganic and organic elements of bone on the proliferation and osteogenic differentiation of hPDLCs using three-dimensional porous β-TCP ceramics and DBM with or without osteogenic inducers. Primary hPDLCs were isolated from human periodontal ligaments. The proliferation of the hPDLCs on the scaffolds in the growth culture medium was examined using a Cell‑Counting kit‑8 (CCK-8) and scanning electron microscopy (SEM). Alkaline phosphatase (ALP) activity and the osteogenic differentiation of the hPDLCs cultured on the β-TCP ceramics and DBM were examined in both the growth culture medium and osteogenic culture medium. Specific osteogenic differentiation markers were examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). SEM images revealed that the cells on the β-TCP were spindle-shaped and much more spread out compared with the cells on the DBM surfaces. There were no significant differences observed in cell proliferation between the β-TCP ceramics and the DBM scaffolds. Compared with the cells that were cultured on β-TCP ceramics, the ALP activity, as well as the Runx2 and osteocalcin (OCN) mRNA levels in the hPDLCs cultured on DBM were significantly enhanced both in the growth culture medium and the osteogenic culture medium. The organic elements of bone may exhibit greater osteogenic differentiation effects on hPDLCs than the inorganic elements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone is a complex material with a hierarchical multi-scale organization from the molecule to the organ scale. The genetic bone disease, osteogenesis imperfecta, is primarily caused by mutations in the collagen type I genes, resulting in bone fragility. Because the basis of the disease is molecular with ramifications at the whole bone level, it provides a platform for investigating the relationship between structure, composition, and mechanics throughout the hierarchy. Prior studies have individually shown that OI leads to: 1. increased bone mineralization, 2. decreased elastic modulus, and 3. smaller apatite crystal size. However, these have not been studied together and the mechanism for how mineral structure influences tissue mechanics has not been identified. This lack of understanding inhibits the development of more accurate models and therapies. To address this research gap, we used a mouse model of the disease (oim) to measure these outcomes together in order to propose an underlying mechanism for the changes in properties. Our main finding was that despite increased mineralization, oim bones have lower stiffness that may result from the poorly organized mineral matrix with significantly smaller, highly packed and disoriented apatite crystals. Using a composite framework, we interpret the lower oim bone matrix elasticity observed as the result of a change in the aspect ratio of apatite crystals and a disruption of the crystal connectivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At 5 and 15 weeks post-surgery, biomechanical and histological analyses of cancellous bone defects filled with the bovine trabecular bone matrix (BBM) and hydroxyapatite (Hap) particulates of dimensions 106–150 µm were investigated. It was observed that at 5 weeks post-surgery the stiffness properties of the BBM filled defects were significantly higher than those observed in the Hap filled defects (p

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The aim of this study is to verify the regenerative potential of particulate anorganic bone matrix synthetic peptide-15 (ABM-P-15) in class III furcation defects associated or not with expanded polytetrafluoroethylene membranes. Methods: Class III furcation defects were produced in the mandibular premolars (P2, P3, and P4) of six dogs and filled with impression material. The membranes and the bone grafts were inserted into P3 and P4, which were randomized to form the test and control groups, respectively; P2 was the negative control group. The animals were sacrificed 3 months post-treatment. Results: Histologically, the complete closure of class III furcation defects was not observed in any of the groups. Partial periodontal regeneration with similar morphologic characteristics among the groups was observed, however, through the formation of new cementum, periodontal ligament, and bone above the notch. Histologic analysis showed granules from the bone graft surrounded by immature bone matrix and encircled by newly formed tissue in the test group. The new bone formation area found in the negative control group was 2.28 +/- 2.49 mm(2) and in the test group it was 6.52 +/- 5.69 mm(2), which showed statistically significant differences for these groups considering this parameter (Friedman test P <0.05). There was no statistically significant difference among the negative control, control, and test groups for the other parameters. Conclusions: The regenerative potential of ABM-P-15 was demonstrated through new bone formation circumscribing and above the graft particles. The new bone also was accompanied by the formation of new cementum and periodontal ligament fibers. J Periodontol 2010;81:594-603.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Preventing ridge collapse with the extraction of maxillary anterior teeth is vital to an esthetic restorative result. Several regenerative techniques are available and are used for socket preservation. The aim of this study is to analyze by clinical parameters the use of acellular dermal matrix (ADM) and anorganic bovine bone matrix (ABM) with synthetic cell-binding peptide P-15 to preserve alveolar bone after tooth extraction. Methods: Eighteen patients in need of extraction of maxillary anterior teeth were selected and randomly assigned to the test group (ADM plus ABM/P-15) or the control group (ADM only). Clinical measurements were recorded initially and at 6 months after ridge-preservation procedures. Results: In the clinical measurements (external vertical palatal measurement [EVPM], external vertical buccal measurement [EVBM], and alveolar horizontal measurement [AHM]) the statistical analysis showed no difference between test and control groups initially and at 6 months. The intragroup analysis, after 6 months, showed a statistically significant reduction in the measurements for both groups. In the comparison between the two groups, the differences in the test group were as follows: EVPM = 0.83 +/- 1.53 mm; EVBM = 1.20 +/- 2.02 mm; and AHM = 2.53 +/- 1.81 mm. The differences in the control group were as follows: EVPM = 0.87 +/- 1.13 mm; EVBM = 1.50 +/- 1.15 mm; and AHM = 3.40 +/- 1.39 mm. The differences in EVPM and EVBM were not statistically significant; however, in horizontal measurement (AHM), there was a statistically significant difference (P<0.05). Conclusion: The results of this study show that ADM used as membrane associated with ABM/P-15 can be used to reduce buccal-palatal dimensions compared to ADM alone for preservation of the alveolar ridge after extraction of anterior maxillary teeth. J Periodontol 2011;82:72-79.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Innocuous biocompatible materials have been searched to repair or reconstruct bone defects. Their goal is to restore the function of live or dead tissues. This study compared connective tissue and bone reaction when exposed to demineralized bovine bone matrix and a polyurethane resin derived from castor bean (Ricinus communis). Forty-five rats were assigned to 3 groups of 15 animals (control, bovine bone and polyurethane). A cylindrical defect was created on mandible base and filled with bovine bone matrix and the polyurethane. Control group received no treatment. Analyses were performed after 15, 45 and 60 days (5 animals each). Histological analysis revealed connective tissue tolerance to bovine bone with local inflammatory response similar to that of the control group. After 15 days, all groups demonstrated similar outcomes, with mild inflammatory reaction, probably due to the surgical procedure rather than to the material. In the polymer group, after 60 days, scarce multinucleated cells could still be observed. In general, all groups showed good stability and osteogenic connective tissue with blood vessels into the surgical area. The results suggest biocompatibility of both materials, seen by their integration into rat mandible. Moreover, the polyurethane seems to be an alternative in bone reconstruction and it is an inexhaustible source of biomaterial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of daily energy doses of 0.03, 0.3 and 0.9 J of He-Ne laser irradiation on the repair of surgically produced tibia damage was investigated in Wistar rats. Laser treatment was initiated 24 h after the trauma and continued daily for 7 or 14 days in two groups of nine rats (n=3 per laser dose and period). Two control groups (n=9 each) with injured tibiae were used. The course of healing was monitored using morphometrical analysis of the trabecular area. The organization of collagen fibers in the bone matrix and the histology of the tissue were evaluated using Picrosirius-polarization method and Masson's trichrome. After 7 days, there was a significant increase in the area of neoformed trabeculae in tibiae irradiated with 0.3 and 0.9 J compared to the controls. At a daily dose of 0.9 J (15 min of irradiation per day) the 7-day group showed a significant increase in trabecular bone growth compared to the 14-day group. However, the laser irradiation at the daily dose of 0.3 J produced no significant decrease in the trabecular area of the 14-day group compared to the 7-day group, but there was significant increase in the trabecular area of the 15-day controls compared to the 8-day controls. Irradiation increased the number of hypertrophic osteoclasts compared to non-irradiated injured tibiae (controls) on days 8 and 15. The Picrosirius-polarization method revealed bands of parallel collagen fibers (parallel-fibered bone) at the repair site of 14-day-irradiated tibiae, regardless of the dose. This organization improved when compared to 7-day-irradiated tibiae and control tibiae. These results show that low-level laser therapy stimulated the growth of the trabecular area and the concomitant invasion of osteoclasts during the first week, and hastened the organization of matrix collagen (parallel alignment of the fibers) in a second phase not seen in control, non-irradiated tibiae at the same period. The active osteoclasts that invaded the regenerating site were probably responsible for the decrease in trabecular area by the fourteenth day of irradiation. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. 1. Solubilized and membrane-bound alkaline phosphatase showed Michaelis-Menten behavior in a wide range of different substrate concentrations. 2. 2. Membrane-bound alkaline phosphatase has a molecular weight of 130,000 and its minimum active configuration comprises two identical subunits of about 65,000. 3. 3. The two forms of the enzyme behave similarly with respect to NaCl, urea and guanidine HCl. 4. 4. Catalytic groups have pK values of about 8.5 and 9.7 for both membrane-bound and solubilized enzyme. © 1987.