985 resultados para Blackwell Theorem
Resumo:
The value of knowing about data availability and system accessibility is analyzed through theoretical models of Information Economics. When a user places an inquiry for information, it is important for the user to learn whether the system is not accessible or the data is not available, rather than not have any response. In reality, various outcomes can be provided by the system: nothing will be displayed to the user (e.g., a traffic light that does not operate, a browser that keeps browsing, a telephone that does not answer); a random noise will be displayed (e.g., a traffic light that displays random signals, a browser that provides disorderly results, an automatic voice message that does not clarify the situation); a special signal indicating that the system is not operating (e.g., a blinking amber indicating that the traffic light is down, a browser responding that the site is unavailable, a voice message regretting to tell that the service is not available). This article develops a model to assess the value of the information for the user in such situations by employing the information structure model prevailing in Information Economics. Examples related to data accessibility in centralized and in distributed systems are provided for illustration.
Resumo:
We prove a Goldstone theorem in thermal relativistic quantum field theory, which relates spontaneous symmetry breaking to the rate of spacelike decay of the two-point function. The critical rate of fall-off coincides with that of the massless free scalar field theory. Related results and open problems are briefly discussed. (C) 2011 American Institute of Physics. [doi:10.1063/1.3526961]
Resumo:
An (n, d)-expander is a graph G = (V, E) such that for every X subset of V with vertical bar X vertical bar <= 2n - 2 we have vertical bar Gamma(G)(X) vertical bar >= (d + 1) vertical bar X vertical bar. A tree T is small if it has at most n vertices and has maximum degree at most d. Friedman and Pippenger (1987) proved that any ( n; d)- expander contains every small tree. However, their elegant proof does not seem to yield an efficient algorithm for obtaining the tree. In this paper, we give an alternative result that does admit a polynomial time algorithm for finding the immersion of any small tree in subgraphs G of (N, D, lambda)-graphs Lambda, as long as G contains a positive fraction of the edges of Lambda and lambda/D is small enough. In several applications of the Friedman-Pippenger theorem, including the ones in the original paper of those authors, the (n, d)-expander G is a subgraph of an (N, D, lambda)-graph as above. Therefore, our result suffices to provide efficient algorithms for such previously non-constructive applications. As an example, we discuss a recent result of Alon, Krivelevich, and Sudakov (2007) concerning embedding nearly spanning bounded degree trees, the proof of which makes use of the Friedman-Pippenger theorem. We shall also show a construction inspired on Wigderson-Zuckerman expander graphs for which any sufficiently dense subgraph contains all trees of sizes and maximum degrees achieving essentially optimal parameters. Our algorithmic approach is based on a reduction of the tree embedding problem to a certain on-line matching problem for bipartite graphs, solved by Aggarwal et al. (1996).
Resumo:
Let P be a linear partial differential operator with analytic coefficients. We assume that P is of the form ""sum of squares"", satisfying Hormander's bracket condition. Let q be a characteristic point; for P. We assume that q lies on a symplectic Poisson stratum of codimension two. General results of Okaji Show that P is analytic hypoelliptic at q. Hence Okaji has established the validity of Treves' conjecture in the codimension two case. Our goal here is to give a simple, self-contained proof of this fact.
Resumo:
In 1983, Jager and Kaul proved that the equator map u*(x) = (x/\x\,0) : B-n --> S-n is unstable for 3 less than or equal to n less than or equal to 6 and a minimizer for the energy functional E(u, B-n) = integral B-n \del u\(2) dx in the class H-1,H-2(B-n, S-n) with u = u* on partial derivative B-n when n greater than or equal to 7. In this paper, we give a new and elementary proof of this Jager-Kaul result. We also generalize the Jager-Kaul result to the case of p-harmonic maps.
Resumo:
We prove that, once an algorithm of perfect simulation for a stationary and ergodic random field F taking values in S(Zd), S a bounded subset of R(n), is provided, the speed of convergence in the mean ergodic theorem occurs exponentially fast for F. Applications from (non-equilibrium) statistical mechanics and interacting particle systems are presented.
Resumo:
Interval-valued versions of the max-flow min-cut theorem and Karp-Edmonds algorithm are developed and provide robustness estimates for flows in networks in an imprecise or uncertain environment. These results are extended to networks with fuzzy capacities and flows. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Ussing [1] considered the steady flux of a single chemical component diffusing through a membrane under the influence of chemical potentials and derived from his linear model, an expression for the ratio of this flux and that of the complementary experiment in which the boundary conditions were interchanged. Here, an extension of Ussing's flux ratio theorem is obtained for n chemically interacting components governed by a linear system of diffusion-migration equations that may also incorporate linear temporary trapping reactions. The determinants of the output flux matrices for complementary experiments are shown to satisfy an Ussing flux ratio formula for steady state conditions of the same form as for the well-known one-component case. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
1. Parasitoids are predicted to spend longer in patches with more hosts, but previous work on Cotesia rubecula (Marshall) has not upheld this prediction, Tests of theoretical predictions may be affected by the definition of patch leaving behaviour, which is often ambiguous. 2. In this study whole plants were considered as patches and assumed that wasps move within patches by means of walking or flying. Within-patch and between-patch flights were distinguished based on flight distance. The quality of this classification was tested statistically by examination of log-survivor curves of flight times. 3. Wasps remained longer in patches with higher host densities, which is consistent with predictions of the marginal value theorem (Charnov 1976). tinder the assumption that each flight indicates a patch departure, there is no relationship between host density and leaving tendency. 4. Oviposition influences the patch leaving behaviour of wasps in a count down fashion (Driessen et al. 1995), as predicted by an optimal foraging model (Tenhumberg, Keller & Possingham 2001). 5. Wasps spend significantly longer in the first patch encountered following release, resulting in an increased rate of superparasitism.
Resumo:
In this paper we study some purely mathematical considerations that arise in a paper of Cooper on the foundations of thermodynamics that was published in this journal. Connections with mathematical utility theory are studied and some errors in Cooper's paper are rectified. (C) 2001 Academic Press.
Resumo:
A constructive version of a theorem of Thue is used to provide representations of certain integers as x(2) - Dy-2, where D = 2, 3, 5, 6, 7.
Resumo:
A number of authors concerned with the analysis of rock jointing have used the idea that the joint areal or diametral distribution can be linked to the trace length distribution through a theorem attributed to Crofton. This brief paper seeks to demonstrate why Crofton's theorem need not be used to link moments of the trace length distribution captured by scan line or areal mapping to the moments of the diametral distribution of joints represented as disks and that it is incorrect to do so. The valid relationships for areal or scan line mapping between all the moments of the trace length distribution and those of the joint size distribution for joints modeled as disks are recalled and compared with those that might be applied were Crofton's theorem assumed to apply. For areal mapping, the relationship is fortuitously correct but incorrect for scan line mapping.
Resumo:
Large values for the mass-to-light ratio (ϒ) in self-gravitating systems is one of the most important evidences of dark matter. We propose a expression for the mass-to-light ratio in spherical systems using MOND. Results for the COMA cluster reveal that a modification of the gravity, as proposed by MOND, can reduce significantly this value.
Resumo:
We show that a self-generated set of combinatorial games, S. may not be hereditarily closed but, strong self-generation and hereditary closure are equivalent in the universe of short games. In [13], the question "Is there a set which will give a non-distributive but modular lattice?" appears. A useful necessary condition for the existence of a finite non-distributive modular L(S) is proved. We show the existence of S such that L(S) is modular and not distributive, exhibiting the first known example. More, we prove a Representation Theorem with Games that allows the generation of all finite lattices in game context. Finally, a computational tool for drawing lattices of games is presented. (C) 2014 Elsevier B.V. All rights reserved.