329 resultados para Bioturbation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantitative determination of modification of primary sediment features, by the activity of organisms (i.e., bioturbation) is essential in geosciences. Some methods proposed since the 1960s are mainly based on visual or subjective determinations. The first semiquantitative evaluations of the Bioturbation Index, Ichnofabric Index, or the amount of bioturbation were attempted, in the best cases using a series of flashcards designed in different situations. Recently, more effective methods involve the use of analytical and computational methods such as X-rays, magnetic resonance imaging or computed tomography; these methods are complex and often expensive. This paper presents a compilation of different methods, using Adobe® Photoshop® software CS6, for digital estimation that are a part of the IDIAP (Ichnological Digital Analysis Images Package), which is an inexpensive alternative to recently proposed methods, easy to use, and especially recommended for core samples. The different methods — “Similar Pixel Selection Method (SPSM)”, “Magic Wand Method (MWM)” and the “Color Range Selection Method (CRSM)” — entail advantages and disadvantages depending on the sediment (e.g., composition, color, texture, porosity, etc.) and ichnological features (size of traces, infilling material, burrow wall, etc.). The IDIAP provides an estimation of the amount of trace fossils produced by a particular ichnotaxon, by a whole ichnocoenosis or even for a complete ichnofabric. We recommend the application of the complete IDIAP to a given case study, followed by selection of the most appropriate method. The IDIAP was applied to core material recovered from the IODP Expedition 339, enabling us, for the first time, to arrive at a quantitative estimation of the discrete trace fossil assemblage in core samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Benthic-pelagic coupling describes processes that operate across and between the seafloor and open-water ecosystems. In soft-sediment communities, bioturbation by sediment-dwelling and epibenthic organisms may strongly shape habitat characteristics and influence processes, e.g. biogeochemical cycling, which supplies bioavailable nutrients to pelagic primary producers. In addition, benthic fauna may mediate benthic-pelagic coupling by affecting the survival and hatching of zooplankton dormant eggs in the sediment. In the shallow waters and seasonally fluctuating environment of the Baltic Sea, emergence from the seafloor essentially contributes to the dynamics of zooplankton pelagic populations. In this thesis, I examine how benthic organisms with different functional traits affect the link between the benthic and pelagic systems in the northern Baltic Sea. By means of experimental laboratory studies, the effects of sediment-dwelling (Monoporeia affinis, Macoma balthica and Marenzelleria spp.) and nectobenthic (Mysis spp.) taxa on the survival and hatching of zooplankton benthic eggs and on benthic nutrient fluxes and sediment structure were investigated. In the predation studies, the nectobenthic mysids Mysis spp. preyed upon benthic eggs of the cladoceran Bosmina longispina maritima (syn. B. coregoni maritima), both in pelagic and benthic environments. Of the sediment-dwelling species, the amphipod M. affinis and the bivalve M. balthica reduced the number of cladoceran eggs in the sediment, whereas the polychaetes Marenzelleria spp. had no effects on cladoceran eggs. Both M. balthica and M. affinis also increased the mortality rates of benthic eggs of copepods and rotifers. It was estimated that zooplankton eggs provide an additional carbon source for food-limited benthic communities. The results indicate that predation pressure on zooplankton benthic eggs may be strong, but varies widely depending on the season and the functional characteristics of the macrofauna. Macoma balthica buried cladoceran eggs and a fluorescent tracer from the sediment surface to a depth of 3 4 cm, indicating efficient sediment mixing. In contrast, the other taxa had fewer effects on particle distributions. In addition to organic matter mineralization, particle mixing is crucial to the success of benthic recruitment of zooplankton, since only eggs close to the sediment surface may hatch. Macoma balthica and M. affinis altered the patterns of zooplankton emergence from the sediment. In general, the highest emergence rates were observed in the absence of macroscopic fauna, and M. balthica exerted a stronger suppressive effect than M. affinis. Moreover, copepods were less severely affected than cladocerans, while only one species (Temora longicornis) clearly benefited from the presence of the macrofauna. These differences probably result from species-specific differences in the resistance of eggs to disturbances. The results show that benthic fauna may considerably alter the patterns of zooplankton emergence from the seafloor, thereby shaping zooplankton pelagic populations. The semi-motile M. balthica and Marenzelleria spp. increased the fluxes of phosphate and ammonium from the sediment to the water, whereas the motile M. affinis and Mysis mixta had a contrasting effect. In the eutrophied Baltic Sea, efficient internal cycling of bioavailable nutrients forms a strong feedback inhibiting the recovery of the ecosystem. Based on the results, a change in species dominance from the two motile taxa, susceptible to oxygen deficiency, to the more tolerant semi-motile taxa provides additional feedback, strengthening internal nutrient cycling and accelerating eutrophication, with deteriorating near-bottom oxygen conditions and changes in the benthic communities. In shallow-water ecosystems, benthic nutrient regeneration plays a key role in determining the overall productivity of the ecosystem. In addition, the results of this study show that the communities in the benthos may essentially contribute to the structure of those in the plankton.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In marine environments, macrofauna living in or on the sediment surface may alter the structure, diversity and function of benthic microbial communities. In particular, microbial nitrogen (N)-cycling processes may be enhanced by the activity of large bioturbating organisms. Here, we study the effect of the burrowing mud shrimp Upogebia deltaura upon temporal variation in the abundance of genes representing key N-cycling functional guilds. The abundance of bacterial genes representing different N-cycling guilds displayed different temporal patterns in burrow sediments in comparison with surface sediments, suggesting that the burrow provides a unique environment where bacterial gene abundances are influenced directly by macrofaunal activity. In contrast, the abundances of archaeal ammonia oxidizers varied temporally but were not affected by bioturbation, indicating differential responses between bacterial and archaeal ammonia oxidizers to environmental physicochemical controls. This study highlights the importance of bioturbation as a control over the temporal variation in nitrogen-cycling microbial community dynamics within coastal sediments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disentangling the roles of environmental change and natural environmental variability on biologically mediated ecosystem processes is paramount to predict future marine ecosystem functioning. Bioturbation, the biogenic mixing of sediments, has a regulating role in marine biogeochemical processes. However, our understanding of bioturbation as a community level process and of its environmental drivers is still limited by loose use of terminology, and a lack of consensus about what bioturbation is. To help resolve these challenges, this empirical study investigated the links between four different attributes of bioturbation (bioturbation depth, activity and distance, and biodiffusive transport); the ability of an index of bioturbation (BPc) to predict each of them; and their relation to seasonality, in a shallow coastal system – the Western Channel Observatory, UK. Bioturbation distance depended on changes in benthic community structure, while the other three attributes were more directly influenced by seasonality in food availability. In parallel, BPc successfully predicted bioturbation distance but not the other attributes of bioturbation. This study therefore highlights that community bioturbation results from this combination of processes responding to environmental variability at different time-scales. However, community level measurements of bioturbation across environmental variability are still scarce, and BPc is calculated using commonly available data on benthic community structure and the functional classification of invertebrates. Therefore, BPc could be used to support the growth of landscape scale bioturbation research, but future uses of the index need to consider which bioturbation attributes the index actually predicts. As BPc predicts bioturbation distance, estimated here using a random-walk model applicable to community settings, studies using either of the metrics should be directly comparable and contribute to a more integrated future for bioturbation research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general introduction to the problems faced in the shrimp culture due to waste formation and its consequent environmental hazards and production problems of Giant tiger shrimp, Penaeus monodon is highlighted by the author in this thesis. The objective of the present work was to assess the potential of brackish water finfish to improve bottom soil conditions and thereby increase the growth and production of Penaeus monodon. The salient findings of the present study are summarized in chapter 7. This is followed by the references cited in the thesis and list ofpublications originated from the present study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bioturbation of mangrove sediments by Uca uruguayensis (Nobili, 1901) and U. rapax (Smith, 1870) was compared based on the grain-size composition and organic content in surface sediment around the burrow and feeding pellets in two mangrove zones of the Sao Vicente Estuary, state of São Paulo, Brazil. For each species, 25 burrows with active crabs were selected. All pellets within a 15-cm radius of each burrow were carefully collected; samples of substrate were taken; and the crab occupant was excavated, sexed, and measured for carapace width (CW). The number of spoon-tipped setae on the second maxilliped of each species was estimated; U. uruguayensis showed more of these setae than U. rapax. For both species, the sediment post-processed by feeding activity (feeding pellets) showed a similar increase of coarser fractions and a smaller organic content. However. U. uruguayensis was more efficient in removing organic matter (88.1%) from the sediment than U. rapax (37.5%). These results suggest that different numbers of spoon-tipped setae on the second maxillipeds of the fiddler crabs do not affect the potential for grain-size selection, but result in differing abilities to remove organic matter from the sediment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Little is known about the benthic communities of the Arctic Ocean's slope and abyssal plains. Here we report on benthic data collected from box cores along a transect from Alaska to the Barents Abyssal Plain during the Arctic Ocean Section of 1994. We determined: (1) density and biomass of the polychaetes, foraminifera and total infauna; (2) concentrations of potential sources of food (pigment concentration and percent organic carbon) in the sediments; (3) surficial particle mixing depths and rates using downcore 210Pb profiles; and (4) surficial porewater irrigation using NaBr as an inert tracer. Metazoan density and biomass vary by almost three orders of magnitude from the shelf to the deep basins (e.g. 47 403 individuals m**-2 on the Chukchi Shelf to 95 individuals m**-2 in the Barents Abyssal Plain). Water depth is the primary determinant of infaunal density, explaining 39% of the total variability. Potential food concentration varies by almost two orders of magnitude during the late summer season (e.g. the phaeopigment concentration integrated to 10 cm varies from 36.16 mg m**-2 on the Chukchi Shelf to 0.94 mg m**-2 in the Siberia Abyssal Plain) but is not significantly correlated with density or biomass of the metazoa. Most stations show evidence of particle mixing, with mixing limited to <=3 cm below the sediment-water interface, and enhanced pore water irrigation occurs at seven of the nine stations examined. Particle mixing depths may be related to metazoan biomass, while enhanced pore water irrigation (beyond what is expected from diffusion alone) appears to be related to total phaeopigment concentration. The data presented here indicate that Arctic benthic ecosystems are quite variable, but all stations sampled contained infauna and most stations had indications of active processing of the sediment by the associated infauna.