978 resultados para Biomedical application


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hollow Microspheres of hydroxyapatite-polymer composite can be used as carriers in drug delivery and fillers in tissue engineering. Based on the concept of soft chemistry, a battery of technique is available in the literature to synthesize hollow microspheres, however, an economically viable synthesis route, having good control over the microarchitect and easy to be scaled up, is yet to be developed. Polymer matrix mediated synthesis of inorganic nanoparticles is known to synthesize nanoparticles with controlled morphology and dimensions. It is termed as biomimetic synthesis. Integrating the biomimetic synthesis of nano-particles and spray drying techniques, a novel process of producing hydroxyapatite-polymer composite hollow microspheres is briefly discussed here.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface mechanical attrition treatment (SMAT), a novel surface severe plastic deformation method, was carried out for titanium (Ti) to create a gradient-structured Ti (SMAT Ti). The tribological behaviour was studied under different loads and dry sliding conditions. The results showed that the deformation layer of SMAT Ti was about 160 lm. The friction and wear results showed that the wear resistance of SMAT Ti was enhanced compared to the coarse-grained (CG) counterpart. SMAT Ti showed abrasive wear under 1 and 5 N, and exhibited abrasive and adhesive wear under 2 N. While CG Ti showed abrasive and adhesive wear under 1–2 N, and exhibited abrasive wear under 5 N for the work hardening effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural rubber latex (NRL) is a flexible biomembrane that possesses angiogenic properties and has recently been used for guided bone regeneration, enhancing healing without fibrous tissue, allergies or rejection. Calcium phosphate (Ca/P) ceramics have chemical, biological, and mechanical properties similar to mineral phase of bone, and ability to bond to the host tissue, although it can disperse from where it is applied. Therefore, to create a composite that could enhance the properties of both materials, NRL biomembranes were coated with Ca/P. NRL biomembranes were soaked in 1.5 times concentrated SBF solution for seven days, avoiding the use of high temperatures. SEM showed that Ca/P has been coated in NRL biomembrane, XRD showed low crystallinity and FTIR showed that is the carbonated type B. Furthermore, hemolysis of erythrocytes, quantified spectrophotometrically using materials (Ca/P, NRL, and NRL + Ca/P) showed no hemolytic effects up to 0.125 mg/mL (compounds and mixtures), indicating no detectable disturbance of the red blood cell membranes. The results show that the biomimetic is an appropriate method to coat NRL with Ca/P without using high temperatures, aiming a new biomembrane to improve guided bone regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic iron oxide nanoparticles have found application as contrast agents for magnetic resonance imaging (MRI) and as switchable drug delivery vehicles. Their stabilization as colloidal carriers remains a challenge. The potential of poly(ethylene imine)-g-poly(ethylene glycol) (PEGPEI) as stabilizer for iron oxide (γ-Fe₂O₃) nanoparticles was studied in comparison to branched poly(ethylene imine) (PEI). Carrier systems consisting of γ-Fe₂O₃-PEI and γ-Fe₂O₃-PEGPEI were prepared and characterized regarding their physicochemical properties including magnetic resonance relaxometry. Colloidal stability of the formulations was tested in several media and cytotoxic effects in adenocarcinomic epithelial cells were investigated. Synthesized γ-Fe₂O₃ cores showed superparamagnetism and high degree of crystallinity. Diameters of polymer-coated nanoparticles γ-Fe₂O₃-PEI and γ-Fe₂O₃-PEGPEI were found to be 38.7 ± 1.0 nm and 40.4 ± 1.6 nm, respectively. No aggregation tendency was observable for γ-Fe₂O₃-PEGPEI over 12 h even in high ionic strength media. Furthermore, IC₅₀ values were significantly increased by more than 10-fold when compared to γ-Fe₂O₃-PEI. Formulations exhibited r₂ relaxivities of high numerical value, namely around 160 mM⁻¹ s⁻¹. In summary, novel carrier systems composed of γ-Fe₂O₃-PEGPEI meet key quality requirements rendering them promising for biomedical applications, e.g. as MRI contrast agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aromatic and aliphatic diacid chlorides were used to condense naturally occurring diamino acids and their esterified derivatives. It was anticipated the resulting functional polyamides would biodegrade to physiologically acceptable compounds and show pH dependant solubility could be used for biomedical applications ranging from enteric coatings to hydrosoluble drug delivery vehicles capable of targeting areas of low physiological pH. With these applications in mind the polymers were characterised by infra red spectroscopy, gel permeation chromatography and in the case of aqueous soluble polymers by potentiometric titration. Thin films of poly (lysine ethyl ester isophthalamide) plasticised with poly (caprolactone) were cast from DMSO/chloroform solutions and their mechanical properties measured on a Hounsfield Hti tensiometer. Interfacial synthesis was investigated as a synthetic route for the production of linear functional polyamides. High molecular weight polymer was obtained only when esterified diamino acids were condensed with aromatic diacid chlorides. The method was unsuitable for the production of copolymers of free and esterified amino acids with a diacid chloride. A novel miscible mixed solvent single phase reaction was investigated for production of copolymers of esterified and non-esterified amino acids with diacid chlorides. Aliphatic diacid chlorides were unsuitable for condensing diamino acids using this technique because of high rates of hydrolysis. The technique gave high molecular weight homopolymers from esterified diamino acids and aromatic diacid chlorides.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Intelligent polymers or stimuli-responsive polymers may exhibit distinct transitions in physical-chemical properties, including conformation, polarity, phase structure and chemical composition in response to changes in environmental stimuli. Due to their unique 'intelligent' characteristics, stimuli-sensitive polymers have found a wide variety of applications in biomedical and nanotechnological fields. This review focuses on the recent developments in biomedical application of intelligent polymer systems, such as intelligent hydrogel systems, intelligent drug delivery systems and intelligent molecular recognition systems. Also, the possible future directions for the application of these intelligent polymer systems in the biomedical field are presented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper investigated the microstructural characterization and mechanical properties of Mg-Zr-Ca alloys prepared by hot-extrusion for potential use in biomedical applications. Mg-Zr-Ca alloys were fabricated by commercial pure Mg (99.9%), Ca (99.9%), and master Mg-33% Zr alloy (mass%). The microstructural characterization of the hot-extruded Mg-Zr-Ca alloys was examined by X-ray diffraction analysis and optical microscopy, and the mechanical properties were determined from tensile tests. The experimental results indicate that the hot-extruded Mg-Zr-Ca alloys with 1 mass% Ca are composed of one single phase and those alloys with 2 mass% Ca consist of both Mg2Ca and α phase. The hot-extruded Mg-Zr-Ca alloys exhibit equiaxed granular microstructures and the hot-extrusion process can effectively increase both the tensile strength and ductility of Mg-Zr-Ca alloys. The hot-extruded Mg-1Zr-1Ca alloy (mass%) exhibits the highest strength and best ductility among all the alloys, and has much higher strength than the human bone, suggesting that it has a great potential to be a good candidate for biomedical application.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: In vivo bone response was assessed by removal torque, hystological and histometrical analysis on a recently developed biomedical Ti-15Mo alloy, after surface modification by laser beam irradiation, installed in the tibia of rabbits. Materials and Methods: A total of 32 wide cylindrical Ti-15Mo dental implants were obtained (10mm × 3.75mm). The implants were divided into two groups: 1) control samples (Machined surface - MS) and 2) implants with their surface modified by Laser beam-irradiation (Test samples - LS). Six implants of each surface were used for removal torque test and 10 of each surface for histological and histometrical analysis. The implants were placed in the tibial metaphyses of rabbits. Results: Average removal torque was 51.5Ncm to MS and >90Ncm to LS. Bone-to-implant-contact percentage was significantly higher for LS implants both in the cortical and marrow regions. Conclusions: The present study demonstrated that laser treated Ti-15Mo alloys are promising materials for biomedical application. © 2011 Wiley Periodicals, Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

New titanium alloys for biomedical applications have been developed primarily with the addition of Nb, Ta, Mo, and Zr, because those elements stabilize the β phase and they don’t cause cytotoxicity in the organism. The objective of this paper is to analyze the effect of molybdenum on the structure, microstructure, and selected mechanical properties of Ti-15Zr-xMo (x = 5, 10, 15, and 20 wt%) alloys. The samples were produced in an arc-melting furnace with inert argon atmosphere, and they were hot-rolled and homogenized. The samples were characterized using chemical, structural, and microstructural analysis. The mechanical analysis was made using Vickers microhardness and Young’s modulus measurements. The compositions of the alloys were sensitive to the molybdenum concentration, indicating the presence of α’+α”+β phases in the Ti-15Zr-5Mo alloy, α”+β in the Ti-15Zr-10Mo alloy, and β phase in the Ti-15Zr-15Mo and Ti-15Zr-20Mo alloys. The mechanical properties showed favorable values for biomedical application in the alloys presenting high hardness and low Young’s modulus compared with CP-Ti.