9 resultados para Bioherms


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stromatolites consist primarily of trapped and bound ambient sediment and/or authigenic mineral precipitates, but discrimination of the two constituents is difficult where stromatolites have a fine texture. We used laser ablation-inductively coupled plasma-mass spectrometry to measure trace element (rare earth element – REE, Y and Th) concentrations in both stromatolites (domical and branched) and closely associated particulate carbonate sediment in interspaces (spaces between columns or branches) from bioherms within the Neoproterozoic Bitter Springs Formation, central Australia. Our high resolution sampling allows discrimination of shale-normalised REE patterns between carbonate in stromatolites and immediately adjacent, fine-grained ambient particulate carbonate sediment from interspaces. Whereas all samples show similar negative La and Ce anomalies, positive Gd anomalies and chondritic Y/Ho ratios, the stromatolites and non-stromatolite sediment are distinguishable on the basis of consistently elevated light REEs (LREEs) in the stromatolitic laminae and relatively depleted LREEs in the particulate sediment samples. Additionally, concentrations of the lithophile element Th are higher in ambient sediment samples than in stromatolites, consistent with accumulation of some fine siliciclastic detrital material in the ambient sediment but a near absence in the stromatolites. These findings are consistent with the stromatolites consisting dominantly of in situ carbonate precipitates rather than trapped and bound ambient sediment. Hence, high resolution trace element (REE + Y, Th) geochemistry can discriminate fine-grained carbonates in these stromatolites from coeval non-stromatolitic carbonate sediment and demonstrates that the sampled stromatolites formed primarily from in situ precipitation, presumably within microbial mats/biofilms, rather than by trapping and binding of ambient sediment. Identification of the source of fine carbonate in stromatolites is significant, because if it is not too heavily contaminated by trapped ambient sediment, it may contain geochemical biosignatures and/or direct evidence of the local water chemistry in which the precipitates formed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Claims for mid-Holocene Aboriginal occupation at the shell matrix site of Wurdukanhan, Mornington Island, Gulf of Carpentaria, Australia, are reassessed through an analysis of the excavated assemblage coupled with new surveys and an extensive dating program. Memmott et al. (2006, pp. 38, 39) reported basal ages of c.5000–5500 years from Wurdukanhan as 'the oldest date yet obtained for any archaeological site on the coast of the southern Gulf of Carpentaria' and used these dates to argue for 'a relatively lengthy occupation since at least the mid-Holocene'. If substantiated, with the exception of western Torres Strait, these claims make Mornington Island the only offshore island used across northern Australia in the mid-Holocene where it is conventionally thought that Aboriginal people only (re)colonised islands after sea-level maximum was achieved after the mid-Holocene. Our analysis of Wurdukanhan demonstrates high shellfish taxa diversity, high rates of natural shell predation and high densities of foraminifera throughout the deposit demonstrating a natural origin for the assemblage. Results are considered in the context of other dated shell matrix sites in the area and a geomorphological model for landscape development of the Sandalwood River catchment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silicified stromatolites have been described in the Permian Teresina Formation, Passa Dois Group, of the Parana Basin. These stromatolites occur as blocks in the Fazenda Monte Alegre area at the headwaters of the creek known as Corrego Catanduva in the municipality of Angatuba. These blocks originate from the Serra de Angatuba region and were recognized in a road that was cut in the midst of sandstones and siltites. The stromatolites are isolated bioherms that are domed to subspherical with a flat base in profile and a rounded to lenticular shape in plan view. The stromatolites exhibit a reddish coloration and are composed of microcrystalline quartz. Lamination is continuous, non-columnar, and anastomosed, showing parallel to divergent growth; however, divergent columns also occur, especially at the tops of the bioherms. The lamination is fine and well preserved, with alternating light and dark laminas. Microfossils of filamentous cyanobacteria are preserved and were related to the genera Microcoleus and Rivularia. Silicified bivalves occur in association with the stromatolites and are preserved in the form of coquina beds and rare isolated specimens within the bioherms. The described specimens belong to the Pinzonella illusa biozone, with representatives of the species Pinzonella illusa, Angatubia cowperesioides, and Houldausiella elongata. The formation environment of these stromatolites is associated with tidal plains of shallow, brackish, relatively calm, warm waters of good luminosity with the presence of weak currents. There was likely a low level of predation, and the environment may have been hypersaline. The coquina beds associated with the stromatolites indicate a probable proximal tempestite, i.e., they were formed near the coastline. The stromatolites were originally composed of carbonates, although these were replaced by silica during early diagenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work aims to identify and photograph grains that compose important Cretaceous carbonate units of the Potiguar Basin, represented by the Ponta do Mel and Jandaíra formations (Albian-Campanian). Petrographic investigation of thin sections was essential. The samples studied come from wells and surface samples from the collection UNESPetro – UNESP, Rio Claro. In the Ponta do Mel Formation, the grains consist of ooids, oncoids, peloids and bioclasts. Regarding to the identified bioclasts, the solenoporacean red algae, mollusks (bivalves and gastropods), echinoids, foraminifera, ostracods and worms were the dominant elements. In the Jandaíra Formation, the grains are composed by ooids, peloids and bioclasts, which are represented by green algae, mollusks (bivalves and gastropods), benthic foraminifera miliolids, worms, echinoderms and ostracods. The grains found in the Ponta do Mel Formation are somewhat similar to those found in the Jandaíra Formation, with the exception of calcareous algae. The subsurface material from the Ponta do Mel Formation is derived from the upper part of the unit, representing marine high-energy carbonates, which also contains ooids and Trocholina. The samples of Jandaíra Formation, collected in outcrops, often contain green algae, mollusks and miliolids, and come from inner shelf and lagoon facies previously described

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The southwestern region of the São Luís-Grajaú Basin has a rare outcrop of the Codó Formation (upper Aptian) with seven outstanding microbialite bioherms along the left margin of the Tocantins river, near Imperatriz (MA). Resting on sandstones of the Grajaú Formation, the Codó Formation presents: 1) a 20 cm thick basal calcilutite with gypsite pseudomorphs and some fossil tree stems; 2) metric dark shales with carbonate nodules and thin intercalated carbonate layers, enclosing some microbial laminites; 3) a 2 cm thick upper breccia composed of microbialite fragments and other carbonate clasts, with halite hoppers on the top; 4) the carbonate bioherms, which partially overlie the extensive shales and interrupt them laterally, as well as the breccia. The bioherms in the northern part of the outcrop are thicker (<2 m) and have interbedded dark shales, whereas the southern are thinner and continuous in the vertical direction. In general, they are composed of irregular gently to strongly wavy microbial laminites, sometimes with pseudocolumnar to conical lamination. All microbialites with highest synoptic relief (<20 cm) look like columnar stromatolites on weathered lateral expositions. In plan view, the horizontal sections of these microbialites are circular to slightly elliptic, sometimes forming very small channels (N60W) filled with fine breccia. The highest bed of the northern bioherm has mixed microbial laminites and columnar stromatolites, where intercolumnar spaces were filled with microbialite clasts, fish bones, plant fragments and very small probable crustacean coprolites. Several fractures and deformation in this upper bed indicate an initial brecciation process probably caused by subaerial exposure. In microscopic scale, the lamination is smooth, diffuse, defined by subtle granulation differences of very fine granular calcite crystals within micrite, but oxide levels, dissolution surfaces or thin precipitated calcite veneers...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silicified stromatolites have been described in the Permian Teresina Formation, Passa Dois Group, of the Parana Basin. These stromatolites occur as blocks in the Fazenda Monte Alegre area at the headwaters of the creek known as Corrego Catanduva in the municipality of Angatuba. These blocks originate from the Serra de Angatuba region and were recognized in a road that was cut in the midst of sandstones and siltites. The stromatolites are isolated bioherms that are domed to subspherical with a flat base in profile and a rounded to lenticular shape in plan view. The stromatolites exhibit a reddish coloration and are composed of microcrystalline quartz. Lamination is continuous, non-columnar, and anastomosed, showing parallel to divergent growth; however, divergent columns also occur, especially at the tops of the bioherms. The lamination is fine and well preserved, with alternating light and dark laminas. Microfossils of filamentous cyanobacteria are preserved and were related to the genera Microcoleus and Rivularia. Silicified bivalves occur in association with the stromatolites and are preserved in the form of coquina beds and rare isolated specimens within the bioherms. The described specimens belong to the Pinzonella illusa biozone, with representatives of the species Pinzonella illusa, Angatubia cowperesioides, and Houldausiella elongata. The formation environment of these stromatolites is associated with tidal plains of shallow, brackish, relatively calm, warm waters of good luminosity with the presence of weak currents. There was likely a low level of predation, and the environment may have been hypersaline. The coquina beds associated with the stromatolites indicate a probable proximal tempestite, i.e., they were formed near the coastline. The stromatolites were originally composed of carbonates, although these were replaced by silica during early diagenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tetradiids are a group of colonial, tubular fossils that occur globally in Middle to Upper Ordovician strata. Tetradiids were first described as a type of tabulate coral; however, based on their four-fold symmetry, division, and presence of a central-sparry canal, they were recently reinterpreted as a florideophyte rhodophyte algae, a reinterpretation that is tested in this thesis. This study focused on understanding the affinity and taphonomy of this order of fossil. Research was conducted by stratigraphic and petrographic analyses of the Black River Group in the Kingston, Ontario region. Tetradiid occurrences were divided into fragment or colonial, with three morphologies of tetradiids described (Tetradium, Phytopsis and Paratetradium). Morphology is specific to depositional environment, with compact Tetradium consistently within ooid grainstones and open branching Phytopsis and chained Paratetradium consistently within mudstones. Two types of patch reefs were recognized: a Paratetradium bioherm, and a Paratetradium, Phytopsis, stromatolite bioherm. The presence of bioherms implies that tetradiids were capable of hypercalcifying. Preservation styles of tetradiids were investigated, and were compared to brachiopods, echinoderms, mollusks, and ooids. Tetradiids were preferentially preserved as molds and demonstrated complete dissolution of skeletal material. Rare specimens, however, demonstrated preserved horizontal partitions, central plates, and a double wall. Skeletal molds were filled with either calcite spar, mud or encrusted by a cryptomicrobial colony. Both calcitic and aragonitic ooids were discovered. The co-occurrence of aragonitic ooids, aragonitic crytodontids, and the evolution of aragonitic, hypercalcifying tetradiids is interpreted as representing the geochemical favoring of aragonite and HMC in a time of global calcite seas. The geochemical favoring of aragonite is interpreted to be independent to global Mg: Ca ratios, but was the result of increased saturation levels and temperature driven by high atmospheric pCO2. Based on the presence of epitheca, tabulae, septa, and the commonality of growth forms, tetradiids are interpreted as an order of Cnidaria. The evolution of an aragonitic skeleton in tetradiids is interpreted to be the result of de novo acquisition of a skeleton from an unmineralized clade.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cold-water coral Lophelia pertusa is one of the few species able to build reef-like structures and a 3-dimensional coral framework in the deep oceans. Furthermore, deep cold-water coral bioherms may be among the first marine ecosystems to be affected by ocean acidification. Colonies of L. pertusa were collected during a cruise in 2006 to cold-water coral bioherms of the Mingulay reef complex (Hebrides, North Atlantic). Shortly after sample collection onboard these corals were labelled with calcium-45. The same experimental approach was used to assess calcification rates and how those changed due to reduced pH during a cruise to the Skagerrak (North Sea) in 2007. The highest calcification rates were found in youngest polyps with up to 1% d-1 new skeletal growth and average rates of 0.11±0.02% d-1±S.E.). Lowering pH by 0.15 and 0.3 units relative to the ambient level resulted in calcification being reduced by 30 and 56%. Lower pH reduced calcification more in fast growing, young polyps (59% reduction) than in older polyps (40% reduction). Thus skeletal growth of young and fast calcifying corallites suffered more from ocean acidification. Nevertheless, L. pertusa exhibited positive net calcification (as measured by 45Ca incorporation) even at an aragonite saturation state below 1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tetradiids are a group of colonial, tubular fossils that occur globally in Middle to Upper Ordovician strata. Tetradiids were first described as a type of tabulate coral; however, based on their four-fold symmetry, division, and presence of a central-sparry canal, they were recently reinterpreted as a florideophyte rhodophyte algae, a reinterpretation that is tested in this thesis. This study focused on understanding the affinity and taphonomy of this order of fossil. Research was conducted by stratigraphic and petrographic analyses of the Black River Group in the Kingston, Ontario region. Tetradiid occurrences were divided into fragment or colonial, with three morphologies of tetradiids described (Tetradium, Phytopsis and Paratetradium). Morphology is specific to depositional environment, with compact Tetradium consistently within ooid grainstones and open branching Phytopsis and chained Paratetradium consistently within mudstones. Two types of patch reefs were recognized: a Paratetradium bioherm, and a Paratetradium, Phytopsis, stromatolite bioherm. The presence of bioherms implies that tetradiids were capable of hypercalcifying. Preservation styles of tetradiids were investigated, and were compared to brachiopods, echinoderms, mollusks, and ooids. Tetradiids were preferentially preserved as molds and demonstrated complete dissolution of skeletal material. Rare specimens, however, demonstrated preserved horizontal partitions, central plates, and a double wall. Skeletal molds were filled with either calcite spar, mud or encrusted by a cryptomicrobial colony. Both calcitic and aragonitic ooids were discovered. The co-occurrence of aragonitic ooids, aragonitic crytodontids, and the evolution of aragonitic, hypercalcifying tetradiids is interpreted as representing the geochemical favoring of aragonite and HMC in a time of global calcite seas. The geochemical favoring of aragonite is interpreted to be independent to global Mg: Ca ratios, but was the result of increased saturation levels and temperature driven by high atmospheric pCO2. Based on the presence of epitheca, tabulae, septa, and the commonality of growth forms, tetradiids are interpreted as an order of Cnidaria. The evolution of an aragonitic skeleton in tetradiids is interpreted to be the result of de novo acquisition of a skeleton from an unmineralized clade.