991 resultados para Bilinear pairing-based accumulator


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An accumulator based on bilinear pairings was proposed at CT-RSA'05. Here, it is first demonstrated that the security model proposed by Lan Nguyen does lead to a cryptographic accumulator that is not collision resistant. Secondly, it is shown that collision-resistance can be provided by updating the adversary model appropriately. Finally, an improvement on Nguyen's identity escrow scheme, with membership revocation based on the accumulator, by removing the trusted third party is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bilinear pairings can be used to construct cryptographic systems with very desirable properties. A pairing performs a mapping on members of groups on elliptic and genus 2 hyperelliptic curves to an extension of the finite field on which the curves are defined. The finite fields must, however, be large to ensure adequate security. The complicated group structure of the curves and the expensive field operations result in time consuming computations that are an impediment to the practicality of pairing-based systems. The Tate pairing can be computed efficiently using the ɳT method. Hardware architectures can be used to accelerate the required operations by exploiting the parallelism inherent to the algorithmic and finite field calculations. The Tate pairing can be performed on elliptic curves of characteristic 2 and 3 and on genus 2 hyperelliptic curves of characteristic 2. Curve selection is dependent on several factors including desired computational speed, the area constraints of the target device and the required security level. In this thesis, custom hardware processors for the acceleration of the Tate pairing are presented and implemented on an FPGA. The underlying hardware architectures are designed with care to exploit available parallelism while ensuring resource efficiency. The characteristic 2 elliptic curve processor contains novel units that return a pairing result in a very low number of clock cycles. Despite the more complicated computational algorithm, the speed of the genus 2 processor is comparable. Pairing computation on each of these curves can be appealing in applications with various attributes. A flexible processor that can perform pairing computation on elliptic curves of characteristic 2 and 3 has also been designed. An integrated hardware/software design and verification environment has been developed. This system automates the procedures required for robust processor creation and enables the rapid provision of solutions for a wide range of cryptographic applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several papers have studied fault attacks on computing a pairing value e(P, Q), where P is a public point and Q is a secret point. In this paper, we observe that these attacks are in fact effective only on a small number of pairing-based protocols, and that too only when the protocols are implemented with specific symmetric pairings. We demonstrate the effectiveness of the fault attacks on a public-key encryption scheme, an identity-based encryption scheme, and an oblivious transfer protocol when implemented with a symmetric pairing derived from a supersingular elliptic curve with embedding degree 2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Along with the growing demand for cryptosystems in systems ranging from large servers to mobile devices, suitable cryptogrophic protocols for use under certain constraints are becoming more and more important. Constraints such as calculation time, area, efficiency and security, must be considered by the designer. Elliptic curves, since their introduction to public key cryptography in 1985 have challenged established public key and signature generation schemes such as RSA, offering more security per bit. Amongst Elliptic curve based systems, pairing based cryptographies are thoroughly researched and can be used in many public key protocols such as identity based schemes. For hardware implementions of pairing based protocols, all components which calculate operations over Elliptic curves can be considered. Designers of the pairing algorithms must choose calculation blocks and arrange the basic operations carefully so that the implementation can meet the constraints of time and hardware resource area. This thesis deals with different hardware architectures to accelerate the pairing based cryptosystems in the field of characteristic two. Using different top-level architectures the hardware efficiency of operations that run at different times is first considered in this thesis. Security is another important aspect of pairing based cryptography to be considered in practically Side Channel Analysis (SCA) attacks. The naively implemented hardware accelerators for pairing based cryptographies can be vulnerable when taking the physical analysis attacks into consideration. This thesis considered the weaknesses in pairing based public key cryptography and addresses the particular calculations in the systems that are insecure. In this case, countermeasures should be applied to protect the weak link of the implementation to improve and perfect the pairing based algorithms. Some important rules that the designers must obey to improve the security of the cryptosystems are proposed. According to these rules, three countermeasures that protect the pairing based cryptosystems against SCA attacks are applied. The implementations of the countermeasures are presented and their performances are investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Identity-Based (IB) cryptography is a rapidly emerging approach to public-key cryptography that does not require principals to pre-compute key pairs and obtain certificates for their public keys— instead, public keys can be arbitrary identifiers such as email addresses, while private keys are derived at any time by a trusted private key generator upon request by the designated principals. Despite the flurry of recent results on IB encryption and signature, some questions regarding the security and efficiency of practicing IB encryption (IBE) and signature (IBS) as a joint IB signature/encryption (IBSE) scheme with a common set of parameters and keys, remain unanswered. We first propose a stringent security model for IBSE schemes. We require the usual strong security properties of: (for confidentiality) indistinguishability against adaptive chosen-ciphertext attacks, and (for nonrepudiation) existential unforgeability against chosen-message insider attacks. In addition, to ensure as strong as possible ciphertext armoring, we also ask (for anonymity) that authorship not be transmitted in the clear, and (for unlinkability) that it remain unverifiable by anyone except (for authentication) by the legitimate recipient alone. We then present an efficient IBSE construction, based on bilinear pairings, that satisfies all these security requirements, and yet is as compact as pairing-based IBE and IBS in isolation. Our scheme is secure, compact, fast and practical, offers detachable signatures, and supports multirecipient encryption with signature sharing for maximum scalability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We construct two efficient Identity-Based Encryption (IBE) systems that admit selective-identity security reductions without random oracles in groups equipped with a bilinear map. Selective-identity secure IBE is a slightly weaker security model than the standard security model for IBE. In this model the adversary must commit ahead of time to the identity that it intends to attack, whereas in an adaptive-identity attack the adversary is allowed to choose this identity adaptively. Our first system—BB1—is based on the well studied decisional bilinear Diffie–Hellman assumption, and extends naturally to systems with hierarchical identities, or HIBE. Our second system—BB2—is based on a stronger assumption which we call the Bilinear Diffie–Hellman Inversion assumption and provides another approach to building IBE systems. Our first system, BB1, is very versatile and well suited for practical applications: the basic hierarchical construction can be efficiently secured against chosen-ciphertext attacks, and further extended to support efficient non-interactive threshold decryption, among others, all without using random oracles. Both systems, BB1 and BB2, can be modified generically to provide “full” IBE security (i.e., against adaptive-identity attacks), either using random oracles, or in the standard model at the expense of a non-polynomial but easy-to-compensate security reduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Certificateless public key cryptography was introduced to avoid the inherent key escrow problem in identity-based cryptography, and eliminate the use of certificates in traditional PKI. Most cryptographic schemes in certificateless cryptography are built from bilinear mappings on elliptic curves which need costly operations. Despite the investigation of certificateless public key encryption without pairings, certificateless signature without pairings received much less attention than what it deserves. In this paper, we present a concrete pairing-free certificateless signature scheme for the first time. Our scheme is more computationally efficient than others built from pairings. The new scheme is provably secure in the random oracle model assuming the hardness of discrete logarithm problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The notion of certificateless cryptography is aimed to eliminate the use of certificates in traditional public key cryptography and also to solve the key-escrow problem in identity-based cryptography. Many kinds of security models have been designed for certificateless cryptography and many new schemes have been introduced based on the correspondence of the security models. In generally speaking, a stronger security model can ensure a certificateless cryptosystem with a higher security level, but a realistic model can lead to a more efficient scheme. In this paper, we focus on the efficiency of a certificateless signature (CLS) scheme and introduce an efficient CLS scheme with short signature size. On one hand, the security of the scheme is based on a realistic model. In this model, an adversary is not allowed to get any valid signature under false public keys. On the other hand, our scheme is as efficient as BLS short signature scheme in both communication and computation and, therefore, turns out to be more efficient than other CLS schemes proposed so far. We provide a rigorous security proof of our scheme in the random oracle model. The security of our scheme is based on the k-CAA hard problem and a new discovered hard problem, namely the modified k-CAA problem. Our scheme can be applied to systems where signatures are typed in by human or systems with low-bandwidth channels and/or low-computation power.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A common scenario in many pairing-based cryptographic protocols is that one argument in the pairing is fixed as a long term secret key or a constant parameter in the system. In these situations, the runtime of Miller's algorithm can be significantly reduced by storing precomputed values that depend on the fixed argument, prior to the input or existence of the second argument. In light of recent developments in pairing computation, we show that the computation of the Miller loop can be sped up by up to 37 if precomputation is employed, with our method being up to 19.5 faster than the previous precomputation techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Secrecy of decryption keys is an important pre-requisite for security of any encryption scheme and compromised private keys must be immediately replaced. \emph{Forward Security (FS)}, introduced to Public Key Encryption (PKE) by Canetti, Halevi, and Katz (Eurocrypt 2003), reduces damage from compromised keys by guaranteeing confidentiality of messages that were encrypted prior to the compromise event. The FS property was also shown to be achievable in (Hierarchical) Identity-Based Encryption (HIBE) by Yao, Fazio, Dodis, and Lysyanskaya (ACM CCS 2004). Yet, for emerging encryption techniques, offering flexible access control to encrypted data, by means of functional relationships between ciphertexts and decryption keys, FS protection was not known to exist.\smallskip In this paper we introduce FS to the powerful setting of \emph{Hierarchical Predicate Encryption (HPE)}, proposed by Okamoto and Takashima (Asiacrypt 2009). Anticipated applications of FS-HPE schemes can be found in searchable encryption and in fully private communication. Considering the dependencies amongst the concepts, our FS-HPE scheme implies forward-secure flavors of Predicate Encryption and (Hierarchical) Attribute-Based Encryption.\smallskip Our FS-HPE scheme guarantees forward security for plaintexts and for attributes that are hidden in HPE ciphertexts. It further allows delegation of decrypting abilities at any point in time, independent of FS time evolution. It realizes zero-inner-product predicates and is proven adaptively secure under standard assumptions. As the ``cross-product" approach taken in FS-HIBE is not directly applicable to the HPE setting, our construction resorts to techniques that are specific to existing HPE schemes and extends them with what can be seen as a reminiscent of binary tree encryption from FS-PKE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distributed-password public-key cryptography (DPwPKC) allows the members of a group of people, each one holding a small secret password only, to help a leader to perform the private operation, associated to a public-key cryptosystem. Abdalla et al. recently defined this tool [1], with a practical construction. Unfortunately, the latter applied to the ElGamal decryption only, and relied on the DDH assumption, excluding any recent pairing-based cryptosystems. In this paper, we extend their techniques to support, and exploit, pairing-based properties: we take advantage of pairing-friendly groups to obtain efficient (simulation-sound) zero-knowledge proofs, whose security relies on the Decisional Linear assumption. As a consequence, we provide efficient protocols, secure in the standard model, for ElGamal decryption as in [1], but also for Linear decryption, as well as extraction of several identity-based cryptosystems [6,4]. Furthermore, we strenghten their security model by suppressing the useless testPwd queries in the functionality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We offer an exposition of Boneh, Boyen, and Goh’s “uber-assumption” family for analyzing the validity and strength of pairing assumptions in the generic-group model, and augment the original BBG framework with a few simple but useful extensions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Executing authenticated computation on outsourced data is currently an area of major interest in cryptology. Large databases are being outsourced to untrusted servers without appreciable verification mechanisms. As adversarial server could produce erroneous output, clients should not trust the server's response blindly. Primitive set operations like union, set difference, intersection etc. can be invoked on outsourced data in different concrete settings and should be verifiable by the client. One such interesting adaptation is to authenticate email search result where the untrusted mail server has to provide a proof along with the search result. Recently Ohrimenko et al. proposed a scheme for authenticating email search. We suggest significant improvements over their proposal in terms of client computation and communication resources by properly recasting it in two-party settings. In contrast to Ohrimenko et al. we are able to make the number of bilinear pairing evaluation, the costliest operation in verification procedure, independent of the result set cardinality for union operation. We also provide an analytical comparison of our scheme with their proposal which is further corroborated through experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

将前向安全的概念引入到基于双线性映射的门限签名方案中,提出了一个基于双线性映射的前向安全的门限签名方案.该方案将签名密钥分散到签名成员集合中,采用各成员部分密钥前向更新的方式实现了签名密钥的前向更新,增强了签名密钥的安全性,使得签名方案具有前向安全性.另外,由于部分密钥具有前向更新的特性,从而方案有效防止了移动攻击.对该方案的安全性进行了分析,分析表明,该方案是安全、有效的.