1000 resultados para Beta-mercaptoethanol


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction of Cibacron blue F3GA with ribosome inactivating proteins, ricin, ricin A-chain and momordin has been investigated using difference absorption spectroscopy. Ricin was found to bind the dye with a 20- and 2-fold lower affinity than ricin A-chain and momordin, respectively. A time dependent increase in the amplitude of Cibacron blue difference spectrum in the presence of ricin was observed on addition of beta-mercaptoethanol. Analysis of the kinetic profile of this increase showed a biphasic phenomenon and the observed rates were found to be independent of the concentration of beta-mercaptoethanol. Kinetics of reduction of the intersubunit disulphide bond in ricin by beta-mercaptoethanol showed that reduction pet se is a second order reaction. Therefore, the observed changes in the difference spectra of Cibacron blue probably indicate a slow change in the conformation of ricin, triggered by reduction of the intersubunit disulphide bond.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrolysis of p-nitrophenyl-beta-D-glucoside by the beta-glucosidase of a thermophilic and cellulolytic fungus, Humicola insolens was stimulated by two-fold in the presence of high concentrations of beta-mercaptoethanol. This enzyme did not have any free sulfhydryl groups and high concentrations of beta-mercaptoethanol (5% v/v) reduced all of the three disulfide bonds present in the enzyme. In contrast, the hydrolysis of cellobiose and cellulose polymers was inhibited by 50% under the same conditions. Sodium dodecyl sulfate (1% w/v) even in combination with beta-mercaptoethanol did not show any significant effects on this enzyme. These unusual properties suggest that this enzyme may be of significant importance for understanding the structure of the enzyme.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thermodynamics of the binding of derivatives of galactose and lactose to a 14 kDa beta-galactoside-binding lectin (L-14) from sheep spleen has been studied in 10 nM phosphate/150 mM NaCl/10 mM beta-mercaptoethanol buffer, pH 7.4, and in the temperature range 285-300 K using titration calorimetry. The single-site binding constants of various sugars for the lectin were in the following order: N-acetyl-lactosamine thiodigalactoside > 4-methylumbelliferyl lactoside > lactose > 4-methylumbelliferyl alpha-D-galactoside > methyl-alpha-galactose > methyl-beta-galactose. Reactions were essentially enthalpically driven with the binding enthalpies ranging from -53.8 kJ/mol for thiodigalactoside at 301 K to -2.2 kJ/mol for galactose at 300 K, indicating that hydrogen-bonding and van der Waals interactions provide the major stabilization for these reactions. However, the binding of 4-methylumbelliferyl-alpha-D-galactose displays relatively favourable entropic contributions, indicating the existence of a non-polar site adjacent to the galactose-binding subsite. From the increments in the enthalpies for the binding of lactose, N-acetyl-lactosamine and thiodigalactoside relative to methyl-beta-galactose, the contribution of glucose binding in the subsite adjacent to that for galactose shows that glucose makes a major contribution to the stability of L-14 disaccharide complexes. Observation of enthalpy-entropy compensation for the recognition of saccharides such as lactose by L-14 and the absence of it for monosaccharides such as galactose, together with the lack of appreciable changes in the heat capacity (delta Cp), indicate that reorganization of water plays an important role in these reactions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The giant extracellular hemoglobin of Glossoscolex paulistus (HbGp) has a molecular mass (M) of 3600 +/- 100 kDa and a standard sedimentation coefficient (s(20.w)(0)) of 58 S. estimated by analytical ultracentrifugation (AUC). In the present work, further AUC studies were developed for HbGp, at pH 10.0, which favors oligomeric dissociation into lower M species. The HbGp oligomer is formed by globin chains a, b, c and d plus the linker chains. The pure monomeric fraction, subunit d, and HbGp at pH 10.0, in the presence of beta-mercaptoethanol, were also studied. Our results indicate that for samples of pure subunit d, besides the monomeric species with s(20.w)(0) of 2.0 S, formation of dimer of subunit d is observed with s(20.w)(0) of around 2.9 S. For the whole HbGp at pH 10.0 contributions from monomers, trimers and linkers are observed. No contribution from 58 S species was observed for the sample of oxy-HbGp at pH 10.0, showing its complete dissociation. For cyanomet-HbGp form a contribution of 17% is observed for the un-dissociated oligomer, consistent with data from other techniques that show the cyanomet-form is more stable as compared to oxy-HbGp. Masses of HbGp subunits, especially trimer abc and monomeric chains a, b, c and d, were also estimated from sedimentation equilibrium data, and are in agreement with the results from MALDI-TOF-MS. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intracellular and extracellular catalases of different species of Candida were investigated using different culture media. All the Candida strains produced intracellular catalase, whose enzymatic activity was detected by non-denaturating polyacrylamide gradient (4-30%) gel electrophoresis. The cell extracts presented a major 230 kDa catalase band and in some strains variants of catalase with different molecular weights were detected. Candida catalase activity was not affected by heating at 50degreesC and incubation with beta-mercaptoethanol, but treatment with sodium dodecyl sulphate inhibited or reduced enzymatic activity. Extracellular enzyme activity was not detected in any of the culture filtrate extracts tested.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Snake Venom Metalloproteinases (SVMPs) are the most abundant components present in Viperidae venom. They are important in the induction of systemic alterations and local tissue damage after envenomation. In the present study, a metalloproteinase named BpMPI was isolated from Bothropoides pauloensis snake venom and its biochemical and enzymatic characteristics were determined. BpMPI was purified in two chromatography steps on ion exchange CM-Sepharose Fast flow and Sephacryl S-300. This protease was homogeneous on SOS-PAGE and showed a single chain polypeptide of 20 kDa under non reducing conditions. The partial amino acid sequence of the enzyme showed high similarity with other SVMPs enzymes from snake venoms. BpMPI showed proteolytic activity upon azocasein and bovine fibrinogen and was inhibited by EDTA, 1,10 phenanthroline and beta-mercaptoethanol. Moreover, this enzyme showed stability at neutral and alkaline pH and it was inactivated at high temperatures. BpMPI was able to hydrolyze glandular and tissue kallikrein substrates, but was unable to act upon factor Xa and plasmin substrates. The enzyme did not induce local hemorrhage in the dorsal region of mice even at high doses. Taken together, our data showed that BpMP-I is in fact a fibrinogenolytic metalloproteinase and a non hemorrhagic enzyme. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A fibrinogenolytic metalloproteinase from Bothrops moojeni venom, named moojenin, was purified by a combination of ion-exchange chromatography on DEAE-Sephacel and gel filtration on Sephacryl S-300. SDS-PAGE analysis indicated that moojenin consists of a single polypeptide chain and has a molecular mass about 45 kDa. Sequencing of moojenin by Edman degradation revealed the amino acid sequence LGPDIVSPPVCGNELLEV-GEECDCGTPENCQNE, which showed strong identity with many other snake venom metalloproteinases (SVMPs). The enzyme cleaves the A alpha-chain of fibrinogen first, followed by the E beta-chain, and shows no effects on the gamma-chain. Moojenin showed a coagulant activity on bovine plasma about 3.1 fold lower than crude venom. The fibrinogenolytic and coagulant activities of the moojenin were abolished by preincubation with EDTA, 1,10-phenanthroline and beta-mercaptoethanol. Moojenin showed maximum activity at temperatures ranging from 30 to 40 degrees C and its optimal pH was 4.0. Its activity was completely lost at temperatures above 50 degrees C. Moojenin induced necrosis in liver and muscle, evidenced by morphological alterations, but did not cause histological alterations in mouse lungs, kidney or heart. Moojenin rendered the blood uncoagulatable when it was intraperitoneally administered into mice. This metalloproteinase may be of medical interest because of its anticoagulant activity. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The structures and functional activities of metalloproteinases from snake venoms have been widely studied because of the importance of these molecules in envenomation. Batroxase, which is a metalloproteinase isolated from Bothrops atrox (Para) snake venom, was obtained by gel filtration and anion exchange chromatography. The enzyme is a single protein chain composed of 202 amino acid residues with a molecular mass of 22.9 kDa, as determined by mass spectrometry analysis, showing an isoelectric point of 7.5. The primary sequence analysis indicates that the proteinase contains a zinc ligand motif (HELGHNLGISH) and a sequence C164I165M166 motif that is associated with a "Met-turn" structure. The protein lacks N-glycosylation sites and contains seven half cystine residues, six of which are conserved as pairs to form disulfide bridges. The three-dimensional structure of Batroxase was modeled based on the crystal structure of BmooMP alpha-I from Bothrops moojeni. The model revealed that the zinc binding site has a high structural similarity to the binding site of other metalloproteinases. Batroxase presented weak hemorrhagic activity, with a MHD of 10 mu g, and was able to hydrolyze extracellular matrix components, such as type IV collagen and fibronectin. The toxin cleaves both a and beta-chains of the fibrinogen molecule, and it can be inhibited by EDTA. EGTA and beta-mercaptoethanol. Batroxase was able to dissolve fibrin clots independently of plasminogen activation. These results demonstrate that Batroxase is a zinc-dependent hemorrhagic metalloproteinase with fibrin(ogen)olytic and thrombolytic activity. Published by Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Agrobacterium tumefaciens VirB7 lipoprotein contributes to the stabilization of VirB proteins during biogenesis of the putative T-complex transport apparatus. Here, we report that stabilization of VirB7 itself is correlated with its ability to form disulfide cross-linked homodimers via a reactive Cys-24 residue. Three types of beta-mercaptoethanol-dissociable complexes were visualized with VirB7 and/or a VirB7::PhoA41 fusion protein: (i) a 9-kDa complex corresponding in size to a VirB7 homodimer, (ii) a 54-kDa complex corresponding in size to a VirB7/VirB7::PhoA41 mixed dimer, and (iii) a 102-kDa complex corresponding to a VirB7::PhoA41 homodimer. A VirB7C24S mutant protein was immunologically undetectable, whereas the corresponding VirB7C24S::PhoA41 derivative accumulated to detectable levels but failed to form dissociable homodimers or mixed dimers with wild-type VirB7. We further report that VirB7-dependent stabilization of VirB9 is correlated with the ability of these two proteins to dimerize via formation of a disulfide bridge between reactive Cys-24 and Cys-262 residues, respectively. Two types of dissociable complexes were visualized: (i) a 36-kDa complex corresponding in size to a VirB7/VirB9 heterodimer and (ii) an 84-kDa complex corresponding in size to a VirB7/VirB9::PhoA293 heterodimer. A VirB9C262S mutant protein was immunologically undetectable, whereas the corresponding VirB9C262S::PhoA293 derivative accumulated to detectable levels but failed to form dissociable heterodimers with wild-type VirB7. Taken together, these results support a model in which the formation of disulfide cross-linked VirB7 dimers represent critical early steps in the biogenesis of the T-complex transport apparatus.