967 resultados para Benzimidazole Derivatives
Resumo:
Histamine is an important biogenic amine, which acts with a group of four G-protein coupled receptors (GPCRs), namely H(1) to H(4) (H(1)R - H(4)R) receptors. The actions of histamine at H(4)R are related to immunological and inflammatory processes, particularly in pathophysiology of asthma, and H(4)R ligands having antagonistic properties could be helpful as antiinflammatory agents. In this work, molecular modeling and QSAR studies of a set of 30 compounds, indole and benzimidazole derivatives, as H(4)R antagonists were performed. The QSAR models were built and optimized using a genetic algorithm function and partial least squares regression (WOLF 5.5 program). The best QSAR model constructed with training set (N = 25) presented the following statistical measures: r (2) = 0.76, q (2) = 0.62, LOF = 0.15, and LSE = 0.07, and was validated using the LNO and y-randomization techniques. Four of five compounds of test set were well predicted by the selected QSAR model, which presented an external prediction power of 80%. These findings can be quite useful to aid the designing of new anti-H(4) compounds with improved biological response.
Resumo:
Two series of benzimidazole derivatives were sythesised. The first one was based on 5,6-dinitrobenzimidazole, the second one comprises 2-thioalkyl- and thioaryl-substituted modified benzimidazoles. Antibacterial and antiprotozoal. activity of the newly obtained compounds was studied. Some thioalkyl derivatives showed remarkable activity against nosocomial strains of Stenotrophomonas malthophilia, and an activity comparable to that of metronidazole against Gram-positive and Gram-negative bacteria. Of the tested compounds, 5,6-dichloro-2-(4-nitrobenzylthio)-benzimidazole showed the most distinct antiprotozoal activity.
Resumo:
Trypanosoma cruzi has a particular cytoskeleton that consists of a subpellicular network of microtubules and actin microfilaments. Therefore, it is an excellent target for the development of new anti-parasitic drugs. Benzimidazole 2-carbamates, a class of well-known broad-spectrum anthelmintics, have been shown to inhibit the in vitro growth of many protozoa. Therefore, to find efficient anti-trypanosomal (trypanocidal) drugs, our group has designed and synthesised several benzimidazole derivatives. One, named JVG9 (5-chloro-1H-benzimidazole-2-thiol), has been found to be effective against T. cruzi bloodstream trypomastigotes under both in vitro and in vivo conditions. Here, we present the in vitro effects observed by laser scanning confocal and scanning electron microscopy on T. cruzi trypomastigotes. Changes in the surface and the distribution of the cytoskeletal proteins are consistent with the hypothesis that the trypanocidal activity of JVG9 involves the cytoskeleton as a target.
Resumo:
Descriptors in multivariate image analysis applied to quantitative structure-activity relationship (MIA-QSAR) are pixels of bidimensional images of chemical structures (drawings), which were used to model the trichomonicidal activities of a series of benzimidazole derivatives. The MIA-QSAR model showed good predictive ability, with r², q² and r val. ext.² of 0.853, 0.519 and 0.778, respectively, which are comparable to the best values obtained by CoMFA e CoMSIA for the same series. A MIA-based analysis was also performed by using images of alphabetic letters with the corresponding numeric ordering as dependent variables, but no correlation was found, supporting that MIA-QSAR is not arbitrary.
Resumo:
Tuberculosis (TB) is a worldwide infectious disease that has shown over time extremely high mortality levels. The urgent need to develop new antitubercular drugs is due to the increasing rate of appearance of multi-drug resistant strains to the commonly used drugs, and the longer durations of therapy and recovery, particularly in immuno-compromised patients. The major goal of the present study is the exploration of data from different families of compounds through the use of a variety of machine learning techniques so that robust QSAR-based models can be developed to further guide in the quest for new potent anti-TB compounds. Eight QSAR models were built using various types of descriptors (from ADRIANA.Code and Dragon software) with two publicly available structurally diverse data sets, including recent data deposited in PubChem. QSAR methodologies used Random Forests and Associative Neural Networks. Predictions for the external evaluation sets obtained accuracies in the range of 0.76-0.88 (for active/inactive classifications) and Q(2)=0.66-0.89 for regressions. Models developed in this study can be used to estimate the anti-TB activity of drug candidates at early stages of drug development (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Descriptors in multivariate image analysis applied to quantitative structure-activity relationship (MIA-QSAR) are pixels of bidimensional images of chemical structures (drawings), which were used to model the trichomonicidal activities of a series of benzimidazole derivatives. The MIA-QSAR model showed good predictive ability, with r², q² and r val. ext.² of 0.853, 0.519 and 0.778, respectively, which are comparable to the best values obtained by CoMFA e CoMSIA for the same series. A MIA-based analysis was also performed by using images of alphabetic letters with the corresponding numeric ordering as dependent variables, but no correlation was found, supporting that MIA-QSAR is not arbitrary.
Resumo:
The albendazole and mebendazole drugs are benzimidazole derivatives and belong to the anthelmintic class. These drugs are particularly recommended for the treatment against worms present in the gastrointestinal tract of animals and humans, by acting directly on the worm metabolism. The need for thermally study drugs is related to all the parameters that these analyzes include: presence or absence of polymorphs, possible changes in the crystallinity of the drugs, as well as the quality control during the manufacturing process thereof. In this study the thermal behavior of anthelmintic albendazole and commercial mebendazole and its recrystallisation in organic solvents, such as acetic acid and formic acid in dimethylformamide to mebendazole, and albendazole were studied using TG-DSC techniques, TG-FTIR, FTIR and XRD. TG-DSC techniques were used so it could collect information about the thermal stability of the compounds steps for thermal decomposition process and also prove its melting temperature. For recrystallization of drugs in organic solvents, the TG-DSC curves were analyzed to compare and determine that the occurrence of polymorphs. The coupled TG-FTIR technique allowed the analysis of volatile products which were released during the thermal decomposition of the commercial mebendazole. The absorption spectroscopy in the infrared region was performed to mebendazole, and albendazole in order to show the difference in functional groups of both, comparing the spectra with commercial drugs and see if there was recrystallized changes in the absorption band where the drug was recrystallized or when heated. The diffraction technique by powder X-ray method was used for comparison of the crystal structures of commercial drugs and recrystallization in organic solvents to identify changes in crystallinity both, which might suggest the formation of polymorphs
Resumo:
Echinococcus multilocularis and Echinococcus granulosus metacestode infections in humans cause alveolar echinococcosis and cystic echinococcosis, respectively, in which metacestode development in visceral organs often results in particular organ failure. Further, cystic hydatidosis in farm animals causes severe economic losses. Although benzimidazole derivatives such as mebendazole and albendazole are being used as therapeutic agents, there is often no complete recovery after treatment. Hence, in searching for novel treatment options, we examined the in vitro efficacies of a number of isoflavones against Echinococcus metacestodes and protoscoleces. The most prominent isoflavone, genistein, exhibits significant metacestodicidal activity in vitro. However, genistein binds to the estrogen receptor and can thus induce estrogenic effects, which is a major concern during long-term chemotherapy. We have therefore investigated the activities of a number of synthetic genistein derivatives carrying a modified estrogen receptor binding site. One of these, Rm6423, induced dramatic breakdown of the structural integrity of the metacestode germinal layer of both species within 5 to 7 days of in vitro treatment. Further, examination of the culture medium revealed increased leakage of parasite proteins into the medium during treatment, but zymography demonstrated a decrease in the activity of metalloproteases. Moreover, two of the genistein derivatives, Rm6423 and Rm6426, induced considerable damage in E. granulosus protoscoleces, rendering them nonviable. These findings demonstrate that synthetic isoflavones exhibit distinct in vitro effects on Echinococcus metacestodes and protoscoleces, which could potentially be exploited further for the development of novel chemotherapeutical tools against larval-stage Echinococcus infection.
Resumo:
Campylobacter is a major cause of acute bacterial gastroenteritis worldwide, with the highest number of infections being attributed to Campylobacter jejuni. C. jejuni is a Gram negative, spiral, motile bacterium that belongs to the campylobacterales order and is related to both Helicobacter spp. and Wolinella sp.. It has long been established that proton pump inhibitors (PPIs) and other benzimidazole derivatives display anti-Helicobacter activity in vitro. PPIs have in the past been shown to affect Helicobacter pylori growth, survival, motility, morphology, adhesion/invasion potential and susceptibility to conventional antibiotics. PPIs are highly effective drugs that are well tolerated, safe for prolonged daily use and are therefore in high demand. Both the PPIs omeprazole and lansoprazole featured in the top ten drugs prescribed in England in 2014. In 2014 Campylobacter was also the most commonly diagnosed gastrointestinal infection in Scotland, in England and Wales and also in Europe. It has previously been generally accepted that patients who are being treated with PPIs are more susceptible to enteric infections such as Campylobacter than people not taking PPIs. The effect of PPI exposure on H. pylori has been investigated rigorously in the past. A single previous study has hinted that PPIs may also be capable of affecting the related organism C. jejuni,but investigations have been extremely limited in comparison to those investigating the effect of PPIs on H. pylori. This study has investigated the in vitro effects of direct contact with PPIs on the biology ofC. jejuni. Exposure to the PPI pantoprazole was found to affect C. jejuni growth/survival, motility, morphology, biofilm formation, invasion potential and susceptibility to some conventional antibiotics. Microarray studies showed that the cmeA and Cj0561c genes were significantly up-regulated in response to pantoprazole exposure and a CmeABC deficient mutant was found to be significantly more susceptible to killing by pantoprazole than was the parent strain. Proteomic analysis indicated that the oxidative stress response of C. jejuni was induced following exposure to sub-lethal concentrations of pantoprazole. C. jejuni gene expression was assessed using qRT-PCR and the genes encoding for thiol peroxidase and GroEL co-chaperonin (both involved in the C. jejuni oxidative stress response) were found to be around four times higher in response to exposure to sub-lethal concentrations of pantoprazole. Experiments using the oxidative stress inhibitors thiourea (a hydroxyl radical quencher) and bipyridyl (a ferrous iron chelator) showed that killing by pantoprazole was not mediated by hydroxyl radical production.
Resumo:
[Excerpt] Purine nucleobases are essential biomolecules in living organisms. Playing several key roles in the cell, they have been a significant inspiration for drug design.1 Benzimidazole nucleus is an important pharmacophore in the development of molecules with pharmaceutical or biological interest. Benzimidazoles have been reported to display significant pharmacological activities such as antiulcer, antifungal, antiparkinson, anticancer and antibiotic.2 Fused structures incorporating these two scaffolds might be important for medicinal chemistry and, to the best of our knowledge, there are no reports of these systems in the literature. In particular, benzo[4,5]imidazo[2,1]purines seem to be novel and must be important target molecules in the heterocyclic synthesis. (...)
Resumo:
The reaction of FcCOC1 (Fc = (C5H5) Fe(C5H4)) with benzimidazole or imidazole in 1: 1 ratio gives the ferrocenyl derivatives FcCO(benzim) (L1) or FcCO(im) (L2), respectively. Two molecules of L1 or L2 can replace two nitrile ligands in [Mo(eta(3)-C3H5)( CO)(2)(CH3CN)(2)Br] or [Mo(eta(3)-C5H5O)(CO)(2)(CH3CN)(2)Br] leading to the new trinuclear complexes [Mo(eta(3)-C3H5)(CO)(2)(L)(2)Br] (C1 for L = L1; C3 for L = L2) and [Mo(eta(3)-C5H5O)(CO)(2)(L)(2)Br] (C-2 for L = L1; C4 for L = L2) with L1 and L2 acting as N-monodentade ligands. L1, L2 and C2 were characterized by X-ray diffraction studies. [Mo(eta(3)-C5H5O)(CO) 2(L1)(2)Br] was shown to be a trinuclear species, with the two L1 molecules occupying one equatorial and one axial position in the coordination sphere of Mo(II). Cyclic voltammetric studies were performed for the two ligands L1 and L2, as well as for their molybdenum complexes, and kinetic and thermodynamic data for the corresponding redox processes obtained. In agreement with the nature of the frontier orbitals obtained from DFT calculations, L1 and L2 exhibit one oxidation process at the Fe(II) center, while C1, C3, and C4 display another oxidation wave at lower potentials, associated with the oxidation of Mo(II). (C) 2007 Elsevier B. V. All rights reserved.
Resumo:
Bifunctional chiral 2-aminobenzimidazole derivatives 1 and 2 catalyze the enantioselective stereodivergent α-chlorination of β-ketoesters and 1,3-diketone derivatives with up to 50% ee using N-chlorosuccinimide (NCS) or 2,3,4,4,5,6-hexachloro-2,5-cyclohexadien-1-one as electrophilic chlorine sources.
Resumo:
Hybrid bioisoster derivatives from N-acylhydrazones and furoxan groups were designed with the objective of obtaining at least a dual mechanism of action: cruzain inhibition and nitric oxide (NO) releasing activity. Fifteen designed compounds were synthesized varying the substitution in N-acylhydrazone and in furoxan group as well. They had its anti-Trypanosoma cruzi activity in amastigotes forms, NO releasing potential and inhibitory cruzain activity evaluated. The two most active compounds (6, 14) both in the parasite amastigotes and in the enzyme contain the nitro group in para position of the aromatic ring. The permeability screening in Caco-2 cell and cytotoxicity assay in human cells were performed for those most active compounds and both showed to be less cytotoxic than the reference drug, benznidazole. Compound 6 was the most promising, since besides activity it showed good permeability and selectivity index, higher than the reference drug. Thereby the compound 6 was considered as a possible candidate for additional studies.
Resumo:
Twelve novel 8-hydroxyquinoline derivatives were synthesized with good yields by performing copper-catalyzed Huisgen 1,3-dipolar cycloaddition (click reaction) between an 8-O-alkylated-quinoline containing a terminal alkyne and various aromatic or protected sugar azides. These compounds were evaluated in vitro for their antiproliferative activity on various cancer cell types. Protected sugar derivative 16 was the most active compound in the series, exhibiting potent antiproliferative activity and high selectivity toward ovarian cancer cells (OVCAR-03, GI50 < 0.25 μg mL(-1)); this derivative was more active than the reference drug doxorubicin (OVCAR-03, GI50 = 0.43 μg mL(-1)). In structure-activity relationship (SAR) studies, the physico-chemical parameters of the compounds were evaluated and docking calculations were performed for the α-glucosidase active site to predict the possible mechanism of action of this series of compounds.
Resumo:
Herein we describe the synthesis of a focused library of compounds based on the structure of goniothalamin (1) and the evaluation of the potential antitumor activity of the compounds. N-Acylation of aza-goniothalamin (2) restored the in vitro antiproliferative activity of this family of compounds. 1-(E)-But-2-enoyl-6-styryl-5,6-dihydropyridin-2(1H)-one (18) displayed enhanced antiproliferative activity. Both goniothalamin (1) and derivative 18 led to reactive oxygen species generation in PC-3 cells, which was probably a signal for caspase-dependent apoptosis. Treatment with derivative 18 promoted Annexin V/7-aminoactinomycin D double staining, which indicated apoptosis, and also led to G2 /M cell-cycle arrest. In vivo studies in Ehrlich ascitic and solid tumor models confirmed the antitumor activity of goniothalamin (1), without signs of toxicity. However, derivative 18 exhibited an unexpectedly lower in vivo antitumor activity, despite the treatments being administered at the same site of inoculation. Contrary to its in vitro profile, aza-goniothalamin (2) inhibited Ehrlich tumor growth, both on the ascitic and solid forms. Our findings highlight the importance of in vivo studies in the search for new candidates for cancer treatment.